Mysterious ‘fast radio burst’ traced back to its home galaxy for first time ever

An animation shows the random appearance of fast radio bursts (FRBs) across the sky. Astronomers have discovered about 85 since 2007, and pinpointed two of them. Credit: NRAO Outreach/T. Jarrett (IPAC/Caltech); B. Saxton, NRAO/AUI/NSF

An animation shows the random appearance of fast radio bursts (FRBs) across the sky. Astronomers have discovered about 85 since 2007, and pinpointed two of them. Credit: NRAO Outreach/T. Jarrett (IPAC/Caltech); B. Saxton, NRAO/AUI/NSF

Three and a half billion years ago, a mysterious object on the edge of a distant galaxy spewed forth an intensely bright, vanishingly brief burst of radio energy that shot across the universe.

That pulse of energy — known to its fans in the astronomy community as a fast radio burst (FRB) — passed through a wilderness of gas, dust and empty space on its multi-billion-year journey, slowly stretching and changing color as it moved. Then, for less than a millisecond in 2018, that burst zapped past a special telescope in Earth’s Australian outback, giving scientists a rare opportunity to shake hands with one of the most mysterious forms of energy in the universe.

1 ounce silver bar is a popular bullion product among collectors and investors alike. Each bar weighs 1 troy oz and is .999+ silver. Bar Highlights: Contains 1 oz of ….

It’s the first time that astronomers have successfully tracked a one-off FRB back to its origins across space and time, according to the authors of a study published today (June 27) in the journal Science. Understanding where FRBs come from allows scientists to probe the vast tracts of matter between their host galaxies and Earth, and maybe even locate undiscovered pockets of protons and neutrons thought to be lurking between galaxies.[The 12 Strangest Objects in the Universe]

“These bursts are altered by the matter they encounter in space,” study co-author Jean-Pierre Macquart, a researcher at the International Centre for Radio Astronomy Research (ICRAR) said in a statement. “Now we can pinpoint where they come from, we can use them to measure the amount of matter in intergalactic space.”

Bursting onto the scene

Since the phenomenon was discovered in 2007, astronomers have observed about 85 FRBs and pinpointed the origins of only one other — a repeating flash that pulsed 9 times from a tiny, star-forming galaxy over about six months in 2016. Pinpointing the source of a one-off FRB, which can last for a fraction of a millisecond, has proved exceedingly difficult, until now.

In their new study, the researchers detected the lone FRB using an array of 36 satellites called the Australian Square Kilometre Array Pathfinder (ASKAP) telescope. When an FRB passes the array, each satellite picks up the burst’s signal a fraction of a millisecond apart. Using these subtle time differences, the researchers were able to figure out which direction the burst came from, and approximately how far it traveled.

The ASKAP observations pointed to a Milky-Way-size galaxy about 3.6 billion light-years away from Earth. With some help from several other large telescopes around the world, the researchers zoomed in on this galaxy to learn that it was relatively old and not forming many new stars.

According Adam Deller, an astrophysicist at Swinburne University of Technology in Australia and co-author of the new study, the properties of this distant galaxy sit in stark contrast to the galaxy that created a repeating fast-radio burst that was detected in 2016.

“The burst we localized and its host galaxy look nothing like the ‘repeater’ and its host,” Deller said in the statement. “It comes from a massive galaxy that is forming relatively few stars. This suggests that fast radio bursts can be produced in a variety of environments.”

While the repeating FRB detected a few years ago was likely created by a neutron star or supernova explosion (common engines of star formation in active galaxies), this individual burst could have been caused by something else entirely, the researchers wrote.

What else, exactly? Nobody knows yet — but radioactive belches from supermassive black holes or the engines of alien spacecraft have not been ruled out. Only by pinpointing more FRBs will researchers be able to unravel this cosmic mystery. Fortunately, the authors of the new study wrote, now that they’ve got one under their belt, finding the next one should be a little easier.

‘Undisturbed’ Roman-era shipwreck discovered off Cyprus

Archaeologists have discovered the wreck of a Roman-era ship off the east coast of Cyprus.

In a statement, Cyprus’ Department of Antiquities explained that the wreck is the first undisturbed Roman shipwreck found in the Mediterranean island nation’s waters. The ship is loaded with amphorae, or large ancient jars, which are likely from Syria and ancient Cilicia on modern-day Turkey’s southeastern coast.

Analysis of the shipwreck will shed new light on seaborne trade between Cyprus and the rest of the Roman provinces of the eastern Mediterranean, officials explained in the statement.

The wreck was found near the resort town of Protaras by a pair of volunteer divers with the University of Cyprus’ archaeological research unit.

The shipwreck was discovered off the coast of Eastern Cyprus.

The shipwreck was discovered off the coast of Eastern Cyprus. (Republic of Cyprus, Department of Antiquities)

It’s also the first time an underwater archaeological project is fully funded by the Cyprus government.

A team from the Maritime Archaeological Research Laboratory at the University of Cyprus is working with the Department of Antiquities and Cyprus University of Technology to document and protect the site.

Other Roman shipwrecks have been grabbing attention in recent years. In 2017, for example, archaeologists in Egypt discovered three Roman-era shipwrecks and other stunning ancient artifacts on the Mediterranean seafloor off the coast of Alexandria.

Climate change researchers working in the Black Sea also discovered 60 shipwrecks dating back 2,500 years, which include vessels from the Roman and Byzantine eras.