How Long Will It Take to Find Proof of Alien Life?

Scientists say we may find evidence for life beyond Earth within the next decades.

Scientists say we may find evidence for life beyond Earth within the next decades.(Image: © SETI)

WASHINGTON — How long until we find evidence of life beyond Earth? If a panel of experts is on track with their estimates, it may be sooner than you think.

That’s according to presenters at the International Astronautical Congress taking place here this week. During a discussion Tuesday Oct. 22), half a dozen people who spend their time focused on questions related to the search for life beyond Earth each offered their educated guesses — and their whimsical wishes — for when humanity might first gather conclusive evidence for extraterrestrial life.

That conversation got serious fast, with panel coordinator Claire Webb, a doctoral student in the history of science at the Massachusetts Institute of Technology. She co-opted the answer of one of the most venerable figures in the search for intelligent life, Frank Drake, who conceptualized the factors at play in finding intelligent life into what is known as the Drake Equation. “He said 2024,” Webb said. “I think he’s a pretty good authority, so I’m going to go with that.”

That estimate is on the short end of the spectrum provided by the panelists. “I wish I could say tomorrow, but that’s being just overoptimistic,” Mike Garrett, the director of Jodrell Bank Observatory in the U.K., said during the panel. “But I think there’s a good chance of discovering life on Mars within the next 5 to 10 to 15 years. I think that really has to be a goal, that would set us on a course to do more interesting things in the area.”

Some responses were presented without comment. Andrew Siemion, director of the Berkeley SETI Research Center, suggested Oct. 22, 2036 — 17 years to the day after the panel in question. Lucianne Walkowicz, an astronomer at the Adler Planetarium in Chicago, said she would ballpark it within the next 15 years.

Others offered a more detailed explanation. Sara Seager, an astronomer at the Massachusetts Institute of Technology focused on finding exoplanets, couched her response within the state of pending science projects that could be responsible for making the discovery. Those projects include a host of space-based telescopes, but none will be working any time soon.

“Assuming they get selected and they get built it’ll still be awhile,” Seager said. “So I’ll say 20 years.”

But these are all guesses, albeit educated ones, and that showed in how some confronted the question. “I certainly would like to think within my lifetime,” Bill Diamond, president and CEO of the SETI Institute, said. “Hopefully that’s more years than I think, but I absolutely think within my lifetime. Probably in the month of March, and hopefully the discovery comes in like a lion and goes out like a lamb.”

And Diamond wasn’t the only one to peg a potential discovery to their own personal timeline.

“I like the idea of my birthday,” Pete Worden, moderator of the panel and executive director for Breakthrough Initiatives, said to close out the session, which began with belated birthday wishes. “So my 80th birthday, which is 10 years from now.”

Asteroid Hygiea could become the tiniest dwarf planet

As the debate rages on whether Pluto, currently a dwarf planet, should be given back its planet status, it may soon be joined by an asteroid that could wind up being the smallest dwarf planet in the solar system.

Asteroid Hygiea, the fourth largest space rock in the Asteroid Belt, was observed for the first time by astronomers in high-resolution. It’s spherical in shape and may wind up taking the crown for the smallest dwarf from Ceres, also located in the Asteroid Belt.

“Thanks to the unique capability of the SPHERE instrument on the [Very Large Telescope], which is one of the most powerful imaging systems in the world, we could resolve Hygiea’s shape, which turns out to be nearly spherical,” said the study’s lead author, Pierre Vernazza, in a statement. “Thanks to these images, Hygiea may be reclassified as a dwarf planet, so far the smallest in the Solar System.”

A new SPHERE/VLT image of Hygiea, which could be the Solar System’s smallest dwarf planet yet. As an object in the main asteroid belt, Hygiea satisfies right away three of the four requirements to be classified as a dwarf planet: it orbits around the Sun, it is not a moon and, unlike a planet, it has not cleared the neighborhood around its orbit. The final requirement is that it has enough mass that its own gravity pulls it into a roughly spherical shape. This is what VLT observations have now revealed about Hygiea. (Credit: ESO/P. Vernazza et al./MISTRAL algorithm (ONERA/CNRS)

A new SPHERE/VLT image of Hygiea, which could be the Solar System’s smallest dwarf planet yet. As an object in the main asteroid belt, Hygiea satisfies right away three of the four requirements to be classified as a dwarf planet: it orbits around the Sun, it is not a moon and, unlike a planet, it has not cleared the neighborhood around its orbit. The final requirement is that it has enough mass that its own gravity pulls it into a roughly spherical shape. This is what VLT observations have now revealed about Hygiea. (Credit: ESO/P. Vernazza et al./MISTRAL algorithm (ONERA/CNRS)

“By comparing Hygiea’s sphericity with that of other Solar System objects, it appears that Hygiea is nearly as spherical as Ceres, opening up the possibility for this object to be reclassified as a dwarf planet,” the study’s abstract states.

In addition to the spherical requirement for dwarf planet status, Hygiea already orbits the Sun, is not a moon, and has “not cleared the neighborhood around its orbit,” the ESO added in its statement.

The research has been published in the scientific journal Nature Astronomy.

Though Hygiea may eventually be given dwarf planet status, it’s significantly smaller than Pluto or Ceres, with a diameter of just 267 miles. Pluto’s diameter is approximately 1,490 miles, while Ceres’ diameter is approximately 590 miles.

Following the discovery, the International Astronomical Union will eventually vote to determine whether Hygiea can be given dwarf planet status or if it will remain an asteroid.

Earlier this month, NASA Administrator Jim Bridenstine said at the International Astronautical Congress that Pluto should be given back its planet status. “I am here to tell you, as the NASA Administrator, I believe Pluto should be a planet,” he said to applause during a wide-ranging speech.

The ‘Mole’ on NASA’s InSight Mars Lander Just Popped Out Of Its Hole (and That’s Not Good)

In this image from Oct. 26, 2019, the InSight Mars lander's heat probe, or "mole," is seen after backing about halfway out of the hole it had burrowed.

In this image from Oct. 26, 2019, the InSight Mars lander’s heat probe, or “mole,” is seen after backing about halfway out of the hole it had burrowed.(Image: © NASA/JPL-Caltech)

A metal mole’s up-and-down saga on Mars has taken yet another turn.

The burrowing heat probe aboard NASA’s InSight Mars lander was originally supposed to dig 10 to 16 feet (3 to 5 meters) beneath the planet’s red dirt, using a self-hammering tool called “the mole.” Shortly after deploying onto the Martian surface in February, however, the instrument became stuck about 1 foot (0.3 m) down.

Earlier this month, InSight team members announced that they’d managed to get the mole moving again by pinning it down with the lander’s robotic arm. The breakthrough suggested that the digger had previously lost friction with the dirt, perhaps as a consequence of Mars soil’s weird properties, rather than having run up against a big buried rock.

This sequence of images shows the burrowing heat probe on NASA’s InSight Mars lander popping back out of the hole it had dug on the Red Planet.
This sequence of images shows the burrowing heat probe on NASA’s InSight Mars lander popping back out of the hole it had dug on the Red Planet.

But that downward progress was short-lived. The mole has backed about halfway out of its burrow, mission team members announced yesterday (Oct. 27). 

“Preliminary assessments point to unusual soil conditions on the Red Planet. The international mission team is developing the next steps to get it buried again,” NASA officials wrote in an update yesterday.

“The next step is determining how safe it is to move InSight’s robotic arm away from the mole to better assess the situation,” they added. “The team continues to look at the data and will formulate a plan in the next few days.”

The heat probe, officially called the Heat Flow and Physical Properties Package (HP3), was provided by the German Aerospace Center (known by its German acronym, DLR). HP3 is one of InSight’s two main science instruments. The other is a suite of supersensitive seismometers that were provided by the French space agency CNES and its partners, which are measuring and characterizing marsquakes.Click here for more Space.com videos…CLOSEVolume 0%This video will resume in 27 seconds 

The data gathered by InSight, which touched down near the Martian equator in November 2018, will help scientists to construct a detailed 3D map of the Red Planet’s interior. This information, in turn, should reveal a great deal about the formation and evolution of rocky planets in general, NASA officials have said.

The seismometers have detected 150 events to date, 23 of which have already been confirmed as marsquakes, InSight project manager Tom Hoffman, of NASA’s Jet Propulsion Laboratory in Pasadena, California said earlier this month during a presentation at the 22nd Annual International Mars Society Convention in Los Angeles.

Thomas Zurbuchen@Dr_ThomasZ · Oct 27, 2019Replying to @Dr_ThomasZ

The Insight mission overall is functioning very well.

Thomas Zurbuchen@Dr_ThomasZ

Remember that, even though the international team will continue to do their best to get this mole into the ground, the mole working is not a so-called Level 1 for mission success.491:05 PM – Oct 27, 2019Twitter Ads info and privacySee Thomas Zurbuchen’s other Tweets

So, InSight remains on track despite the mole’s struggles, said Thomas Zurbuchen, Associate Administrator for NASA’s Science Mission Directorate.

“The Insight mission overall is functioning very well,” Zurbuchen said via Twitter yesterday.

“Remember that, even though the international team will continue to do their best to get this mole into the ground, the mole working is not a so-called Level 1 for mission success,” he added in another tweet.

US Air Force’s X-37B Space Plane Lands After Record 780-Day Mystery Mission

A U.S. Air Force X-37B space plane, an unpiloted miniature space shuttle, is seen after landing at NASA's Kennedy Space Center Shuttle Landing Facility on Oct. 27, 2019 to end its record 780-day OTV-5 mission.

A U.S. Air Force X-37B space plane, an unpiloted miniature space shuttle, is seen after landing at NASA’s Kennedy Space Center Shuttle Landing Facility on Oct. 27, 2019 to end its record 780-day OTV-5 mission. (Image: © U.S. Air Force)

The U.S. Air Force’s unpiloted X-37B space plane landed back on Earth Sunday (Oct. 27) after a record 780 days in orbit , racking up the fifth ultra-long mission for the military’s mini-shuttle fleet. 

The X-37B’s Orbital Test Vehicle 5 (OTV-5) mission ended with a smooth autonomous touchdown at the Shuttle Landing Facility of NASA’s Kennedy Space Center in Cape Canaveral, Florida at 3:51 a.m. EDT (0751 GMT), Air Force officials said. The mission originally launched on a SpaceX Falcon 9 rocket on Sept. 7, 2017.

With the successful landing, OTV-5 broke the previous X-37B mission record of 718 days set by the OTV-4 mission in May 2017. OTV-5 is the second X-37B mission to land at NASA’s Shuttle Landing Facility (OTV-4 was the first), with previous missions landing at Vandenberg Air Force Base in California. 

“The safe return of this spacecraft, after breaking its own endurance record, is the result of the innovative partnership between Government and Industry,” Air Force Chief of Staff Gen. David L. Goldfein said in a statement. “The sky is no longer the limit for the Air Force and, if Congress approves, the U.S. Space Force.”

The U.S. Air Force has at least two reusable X-37B spacecraft in its fleet, and both have flown multiple flights. The solar-powered space planes were built by Boeing and feature a miniature payload bay to host experiments or smaller satellites. They were originally designed to spend up to 240 days in orbit.

“The X-37B continues to demonstrate the importance of a reusable spaceplane,” said Secretary of the Air Force Barbara Barrett said in the same statement. “Each successive mission advances our nation’s space capabilities.”

The Air Force’s X-37B Orbital Test Vehicle Mission 5 successfully landed at NASA’s Kennedy Space Center Shuttle Landing Facility Oct. 27, 2019.
The Air Force’s X-37B Orbital Test Vehicle Mission 5 successfully landed at NASA’s Kennedy Space Center Shuttle Landing Facility Oct. 27, 2019. 

Air Force officials have said that the exact nature of X-37B missions are classified, though they have dropped hints about the types of experiments OTV-5 performed in orbit. One payload was the Air Force Research Laboratory Advanced Structurally Embedded Thermal Spreader, an experiment designed to “test experimental electronics and oscillating heat pipe technologies in the long-duration space environment,” according to an Air Force statement.

OTV-5 also flew to a higher-inclination orbit than previous X-37B flights, suggesting it had new experiments or technology tests in store. In a statement today, Air Force officials confirmed OTV-5 carried multiple experiments and carried smaller satellites into orbit. 

“With a successful landing today, the X-37B completed its longest flight to date and successfully completed all mission objectives,” Randy Walden, Air Force Rapid Capabilities Office director, said in the statement. “This mission successfully hosted Air Force Research Laboratory experiments, among others, as well as providing a ride for small satellites.”

The X-37B space plane was originally developed by NASA in 1999 to serve as a technology test bed for future spacecraft and looks much like a miniature version of  a space shuttle. In 2004, the military’s Defense Advanced Research Agency (DARPA) took over the project, ultimately turning it over to the U.S. Air Force’s Rapid Capabilities Office a few years later. 

X-37B vehicles are 29 feet (8.8 meters) long, 9.5 feet (2.9 m) tall and have a wingspan of just under 15 feet (4.6 m). Their payload bays are about the size of a pickup truck bed, about 7 feet long and 4 feet wide (2.1 by 1.2 m).

NASA Europa Mission Could Potentially Spot Signs of Alien Life

Jupiter's ocean-harboring moon Europa, as imaged by NASA's Galileo spacecraft.

Jupiter’s ocean-harboring moon Europa, as imaged by NASA’s Galileo spacecraft.(Image: © NASA/JPL-Caltech/SETI Institute)

If there’s life swimming in the dark, frigid ocean of the Jupiter moon Europa, an upcoming NASA mission might be able to sniff it out.

The agency’s Europa Clipper spacecraft is scheduled to launch in the mid-2020s on a mission to characterize the icy moon’s subsurface sea and its life-hosting potential. But Clipper is capable of making even bigger discoveries, if everything falls into place just right.

“We’re a habitability mission. We’re trying to understand, Is Europa a habitable environment?” Europa Clipper project scientist Robert Pappalardo, of NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, said Wednesday (Oct. 23) at the 70th International Astronautical Congress (IAC) in Washington, D.C.

“We’re not a life-search mission,” Pappalardo added. “But, if Europa’s interior happened to be rich in organic microbes pouring out of it, we would be able to tell from the mass spectra — probably, possibly — that we’re sensing life. That’s a longshot, but it’s not impossible.”

Pappalardo was referring to measurements made by Clipper’s mass spectrometer, one of nine science instruments the probe will carry. Mass spectrometers determine the masses of ions (charged atoms and molecules) in a sample, helping scientists identify what those ions are.

Clipper will collect these samples during dozens of flybys of Europa, which the probe will make from Jupiter orbit over the course of its 3.5-year operational life. Circling Europa itself was not a viable option, given the intense radiation environment around the moon, mission team members have said.

The samples will come from Europa’s wispy atmosphere and, the team hopes, from plumes of water vapor and other material wafting from the icy moon’s surface. Scientists have spotted evidence of such plumes on multiple occasions, but their existence has yet to be confirmed.

“Early in the mission, we’ll be searching for plumes and trying to understand, Are they real? Are they there? Where are they? Are they sporadic or continuously active?” Pappalardo said.

“And maybe we’ll fortuitously go through a plume, or maybe we’ll be able to adjust the orbit slightly in order to go through a plume,” he added. “And if we do, then our in situ instruments, especially the mass spectrometer and the dust detector, will be able to sample that material in extreme detail to search for organic materials and to understand the detailed chemistry of Europa’s interior.”

Pappalardo cautioned that Europa’s plumes, if they do indeed exist, might be very different than the confirmed one emanating from the south polar region of Saturn’s icy moon Enceladus. The Enceladus plume is generated by powerful geysers that are continuously blasting material from the Saturn satellite’s subsurface ocean into space. Although the Europa material could be coming from its ocean, the source could also be lakes of liquid water within the moon’s ice shell, Pappalardo said.

And he stressed that plume sampling won’t make or break Clipper’s mission.

“That’s essentially bonus science, not required by the mission,” Pappalardo said. “But I sure hope it happens.”

The other instruments carried by the solar-powered Clipper, whose total mission costs are estimated at around $4 billion, include a magnetometer and a radar instrument, which will allow the team to characterize in detail Europa’s ocean and ice shell, respectively. Scientists think the ocean is about 50 miles (80 kilometers) deep and the ice shell about 13 miles (20 km) thick, but those are estimates, and there will certainly be regional variation.

In case you just skimmed over that last sentence: A 50-mile-deep ocean is pretty amazing, considering that the deepest point on Earth’s seafloor is just 7 miles (11 km) beneath the waves. At 1,900 miles (3,000 km) wide, Europa is smaller than Earth’s moon but is thought to harbor twice as much liquid water as our planet’s surface does.

Europa’s ocean is also thought to be in contact with the moon’s rocky core, potentially enabling a wide range of interesting and complex chemical reactions. As a result, Europa is widely regarded as one of the solar system’s best bets for harboring alien life. Others on the short list include Enceladus and Saturn’s huge moon Titan, which has hydrocarbon seas on its surface and likely a buried ocean of liquid water as well. 

The Clipper will also tote powerful cameras, which will snap photos with a resolution of about 1.6 feet (0.5 meters) per pixel. That’s 10 times sharper than the best existing images of Europa’s surface, which were captured by NASA’s Galileo spacecraft, Pappalardo said. Galileo orbited Jupiter from 1995 to 2003.

While Clipper’s photos will be revelatory enough in their own right, they should also help pave the way for the next step in Europa exploration: a life-hunting lander that Congress has instructed NASA to develop. Clipper’s data will help researchers identify good places for the lander mission to touch down, NASA officials have said. (The lander mission remains a concept for the moment, however; it’s not officially on NASA’s docket.)Click here for more Space.com videos…NASA’s Europa Mission Assessed by Office of Inspector GeneralVolume 0% 

NASA had long been targeting a 2023 liftoff for Europa Clipper. Congress has told the agency to launch the mission using NASA’s powerful Space Launch System (SLS) megarocket, which would allow Clipper to travel directly to Jupiter and get there after just 2.4 years of flight. 

But SLS is still in development and has experienced multiple delays and cost overruns. In addition, NASA plans to use the first three SLS vehicles for its Artemis lunar-exploration program. As a result, the first SLS available for use by Clipper won’t be ready until 2025 at the earliest, NASA’s Office of the Inspector General (OIG) recently concluded.

The OIG therefore recommended that NASA should be allowed to consider launching Clipper on a commercial rocket, such as SpaceX’s Falcon Heavy or United Launch Alliance’s Delta IV Heavy. These vehicles aren’t as powerful as SLS is expected to be, so going the commercial route would require a different trajectory for Clipper — a roundabout one that employs planetary “gravity assists” and features a total transit time of nearly six years, according to the OIG report.

Asteroid the Size of a Skyscraper Flew by Earth on Friday (Video)

An enormous asteroid flew by Earth today (Oct. 25), and you can watch it zip by in a video from the Virtual Telescope Project.

Asteroid 1998 HL1 was 3.86 million miles (6.21 million kilometers) away from Earth — about 10 times the average distance to the moon — when it makes its closest approach at 1:17 p.m. EDT (1717 GMT), according to NASA.  

The Virtual Telescope Project, an online observatory founded by astrophysicist Gianluca Masi of the Bellatrix Astronomical Observatory in Ceccano, Italy, hosted a live webcast about the asteroid during the close encounter today. You can watch a replay here at the Virtual Telescope Project’s website.

Video: Giant Asteroid 1998 HL1 Seen by Virtual Telescope Project
Related: 
Potentially Dangerous Asteroids (Images)

Gianluca Masi of the Virtual Telescope Project captured this image of the potentially hazardous asteroid 1998 HL1 on Oct. 23, 2019, at 1:41 p.m. EDT (1741 GMT), when the asteroid was about 4.1 million miles (6.6 million kilometers) away from Earth. The image comes from a single 300-second exposure captured remotely using the Virtual Telescope Project’s Elena telescope. The telescope tracked the asteroid’s movement, so the asteroid appears as a white dot in front of a background of star trails.
Gianluca Masi of the Virtual Telescope Project captured this image of the potentially hazardous asteroid 1998 HL1 on Oct. 23, 2019, at 1:41 p.m. EDT (1741 GMT), when the asteroid was about 4.1 million miles (6.6 million kilometers) away from Earth. The image comes from a single 300-second exposure captured remotely using the Virtual Telescope Project’s Elena telescope. The telescope tracked the asteroid’s movement, so the asteroid appears as a white dot in front of a background of star trails. 

NASA classifies asteroid 1998 HL1 as “potentially hazardous” because the space rock has the “potential to make threatening close approaches to the Earth.” That doesn’t mean the asteroid poses a threat this time around. The agency defines all asteroids whose orbits around the sun come within 4.6 million miles (7.8 million km) of Earth’s orbit, and that have a diameter of at least 500 feet (meters) as “potentially hazardous asteroids.”

Asteroid 1998 HL1 measures about 1,800 feet (550 m) in diameter, or about the height of the Sears Tower in Chicago, according to NASA’s Jet Propulsion Laboratory. “This will make it quite bright around the time of the flyby,” Masi wrote in a description of today’s webcast

This sky chart from the Virtual Telescope Project shows the path of asteroid 1998 HL1 through the night sky from Oct. 25 to Oct. 28.
This sky chart from the Virtual Telescope Project shows the path of asteroid 1998 HL1 through the night sky from Oct. 25 to Oct. 28. (Click the top right corner of the image to expand it.)

Today’s flyby will be the closest one until Oct. 26, 2140, when it will be just slightly closer to Earth at a distance of 3.84 million miles (6.18 million km). So, 1998 HL1 won’t pose a real threat to Earth for the foreseeable future. 

Here’s How We Could Detect a Wormhole

Diagram of a wormhole.

Diagram of a wormhole.(Image: © Shutterstock)

Weird star wiggles could betray the presence of wormholes, if these fabled space-time tunnels do indeed exist, a new study suggests.

Wormholes are sci-fi staples; over the years, many stories, books and movies have sent their protagonists zipping between widely separated locales via these cosmic shortcuts. Wormholes are possible, according to Einstein’s general theory of relativity, but nobody has ever spotted one.

The new study provides a possible way to make the first tentative detection: look for slight but strange movements of stars.

“If you have two stars, one on each side of the wormhole, the star on our side should feel the gravitational influence of the star that’s on the other side,” study co-author Dejan Stojkovic, a cosmologist and professor of physics at the University at Buffalo in New York, said in a statement. “The gravitational flux will go through the wormhole.”

Wormholes require extreme warping of space-time, which in turn depends on very powerful gravitational forces. So, a good place to hunt for these theoretical tunnel is near the supermassive black holes that lurk at the cores of galaxies — such as Sagittarius A* (pronounced A-star), the four-million-solar-mass behemoth in our own Milky Way, Stojkovic said.

“So if you map the expected orbit of a star around Sagittarius A*, you should see deviations from that orbit if there is a wormhole there with a star on the other side,” he said.

Current observing techniques likely aren’t sensitive enough to make such a detection at the moment, he added. But it may be possible to do so in the next decade or two with advances in instrumentation as well as long-term monitoring of appropriate target stars, such as S2, which circles near Sagittarius A*.

Don’t get too excited, however; such a detection, if astronomers ever manage to make one, is unlikely to be a slam dunk.

“When we reach the precision needed in our observations, we may be able to say that a wormhole is the most likely explanation if we detect perturbations in the orbit of S2,” Stojkovic said. “But we cannot say that, ‘Yes, this is definitely a wormhole.’ There could be some other explanation, something else on our side perturbing the motion of this star.”

And there’s some more bad news on the space-exploration side: Wormhole travel will probably remain a mere sci-fi dream for a very long time, if not forever, Stojkovic said.

“Even if a wormhole is traversable, people and spaceships most likely aren’t going to be passing through,” he said. “Realistically, you would need a source of negative energy to keep the wormhole open, and we don’t know how to do that. To create a huge wormhole that’s stable, you need some magic.”

The new study, which was led by De-Chang Dai of Yangzhou University in China and Case Western Reserve University in Ohio, was published earlier this month in the journal Physical Review D.

Pioneering NASA Asteroid Mission Clears Key Hurdle on Path to 2021 Launch

An artist's depiction (not to scale) of the Lucy spacecraft visiting the Trojan asteroids near Jupiter.

An artist’s depiction (not to scale) of the Lucy spacecraft visiting the Trojan asteroids near Jupiter.(Image: © NASA/SwRI)

The first mission to visit a mysterious swarm of asteroids that circle the sun along Jupiter’s path has cleared an important hurdle on the way to its 2021 launch.

NASA’s robotic Lucy mission, which will visit six Trojan asteroids during its operational life, passed its critical design review (CDR) on Friday (Oct. 18), agency officials just announced.

During the four-day CDR, independent experts assessed all aspects of Lucy’s design, ultimately deeming the mission fit to proceed to the manufacturing phase.

“This is a very exciting time for us, because we are moving beyond the design phase and are really starting to build the spacecraft,” Lucy principal investigator Hal Levison, from the Southwest Research Institute in Boulder, Colorado, said in a statement Monday (Oct. 21). “It is finally becoming real!”

The Trojan asteroids orbit the sun in two clumps, one ahead of Jupiter (the “leading swarm”) and one behind the gas giant (the “trailing swarm”). Scientists think these space rocks are leftover relics from the long-ago formation of the outer planets, so they’re eager to get some close-up looks.

“These primitive bodies hold vital clues to deciphering the history of the solar system, and perhaps even the origins of life and organic material on Earth,” NASA officials wrote in a Lucy mission description.

If all goes according to plan, Lucy will launch in October 2021, zoom past Earth twice for “gravity assists” and fly by its first asteroid in April 2025. That rock, known as (52246) Donaldjohanson, lies in the main asteroid belt between Mars and Jupiter.

Lucy will then fly by four Trojans in the leading swarm, with the rendezvous occurring in August 2027, September 2027, April 2028 and November 2028. The spacecraft’s orbit will bring Lucy back toward the sun, and when it heads outward again, it will be on a trajectory toward the trailing swarm. The probe will cruise past a trailing-swarm binary Trojan in March 2033, marking the mission’s grand finale.

No other space mission has ever visited so many different destinations in independent orbits, Lucy mission team members have said.Click here for more Space.com videos…Lucy and Psyche – New NASA Missions To Metal and Trojan AsteroidsVolume 0% 

The mission’s name, by the way, is a nod to the famous, 3.2-million-year-old hominid fossil discovered in Ethiopia in 1974 by paleontologists Donald Johanson and Tom Gray. (The Lucy team named after Johanson the main-belt asteroid that the probe will visit.)

Just as discovery of the fossil Lucy shed considerable light on humanity’s origins, the Lucy spacecraft will reveal key insights about the solar system’s early years and evolution, mission team members have said.

Lucy is part of NASA’s Discovery Program of low-cost, focused planetary exploration missions. Lucy’s development costs are capped at about $450 million, NASA officials said.

Other Discovery missions include the InSight Mars lander, Kepler planet-hunting space telescope, Messenger Mercury spacecraft and Dawn probe, which orbited the dwarf planets Vesta and Ceres. Another Discovery mission called Psyche is scheduled to launch in 2022, to explore the mysterious metallic asteroid of the same name.

Monstrous galaxy from dawn of the universe accidentally discovered

Astronomers accidentally discovered the footprints of a monster galaxy in the early universe that has never been seen before. Like a cosmic Yeti, the scientific community generally regarded these galaxies as folklore, given the lack of evidence of their existence, but astronomers in the United States and Australia managed to snap a picture of the beast for the first time.

Published in the Astrophysical Journal, the discovery provides new insights into the first growing steps of some of the biggest galaxies in the universe.

University of Arizona astronomer Christina Williams, lead author of the study, noticed a faint light blob in new sensitive observations using the Atacama Large Millimeter Array, or ALMA, a collection of 66 radio telescopes high in the Chilean mountains. Strangely enough, the shimmering seemed to be coming out of nowhere, like a ghostly footstep in a vast dark wilderness.

“It was very mysterious because the light seemed not to be linked to any known galaxy at all,” said Williams, a National Science Foundation postdoctoral fellow at the Steward Observatory. “When I saw this galaxy was invisible at any other wavelength, I got really excited because it meant that it was probably really far away and hidden by clouds of dust.”

The researchers estimate that the signal came from so far away that it took 12.5 billion years to reach Earth, therefore giving us a view of the universe in its infancy. They think the observed emission is caused by the warm glow of dust particles heated by stars forming deep inside a young galaxy. The giant clouds of dust conceal the light of the stars themselves, rendering the galaxy completely invisible.

Study co-author Ivo Labbé, of the Swinburne University of Technology, Melbourne, Australia, said: “We figured out that the galaxy is actually a massive monster galaxy with as many stars as our Milky Way, but brimming with activity, forming new stars at 100 times the rate of our own galaxy.”

The discovery may solve a long-standing question in astronomy, the authors said. Recent studies found that some of the biggest galaxies in the young universe grew up and came of age extremely quickly, a result that is not understood theoretically. Massive mature galaxies are seen when the universe was only a cosmic toddler at 10% of its current age. Even more puzzling is that these mature galaxies appear to come out of nowhere: astronomers never seem to catch them while they are forming.

Smaller galaxies have been seen in the early universe with the Hubble Space Telescope, but such creatures are not growing fast enough to solve the puzzle. Other monster galaxies have also been previously reported, but those sightings have been far too rare for a satisfying explanation.

“Our hidden monster galaxy has precisely the right ingredients to be that missing link,” Williams explains, “because they are probably a lot more common.”

An open question is exactly how many of them there are. The observations for the current study were made in a tiny part of the sky, less than 1/100th the disc of the full moon. Like the Yeti, finding footprints of the mythical creature in a tiny strip of wilderness would either be a sign of incredible luck or a sign that monsters are literally lurking everywhere.

Williams said researchers are eagerly awaiting the March 2021 scheduled launch of NASA’s James Webb Space Telescope to investigate these objects in more detail.

“JWST will be able to look through the dust veil so we can learn how big these galaxies really are and how fast they are growing, to better understand why models fail in explaining them.”

But for now the monsters are out there, shrouded in dust and a lot of mystery.

Fireball that flew over Japan in 2017 was tiny piece of giant asteroid that might one day threaten Earth

A still from a video shows a fireball passing over Kyoto, Japan after 1 a.m. on April 28, 2017. (Credit: SonataCo Network)

A still from a video shows a fireball passing over Kyoto, Japan after 1 a.m. on April 28, 2017. (Credit: SonataCo Network)

In the early morning of April 28, 2017, a small fireball crept across the sky over Kyoto, Japan. And now, thanks to data collected by the SonotaCo meteor survey, researchers have determined that the fiery space rock was a shard of a much larger asteroid that might (far down the road) threaten Earth.

The meteor that burned over Japan was tiny. Studying the SonotaCo data, the researchers determined that the object entered the atmosphere with a mass of about 1 ounce (29 grams) and was just 1 inch (2.7 centimeters) across. It didn’t threaten anyone. But small meteors like this are interesting because they can offer data on the bigger objects that spawn them. And in this case, the researchers tracked the little rock back to its parent: an object known as 2003 YT1.

Arecibo Radar Images of 2003 YT1

2003 YT1 is a binary asteroid, composed of one large rock about 1.2 miles (2 kilometers) across orbited by a smaller asteroid that’s 690 feet (210 meters) long. Discovered in 2003, the binary system has a 6% chance of hitting Earth at some point in the next 10 million years. That makes the object what researchers call a “potentially hazardous object,” even though it’s unlikely to hurt anyone in your lifetime.

The binary didn’t pass by Earth in 2017, so there wasn’t an immediately obvious link between the meteor and its parent. But the researchers studied how the fireball moved across the sky and were able to reverse-engineer the object’s orbit through space, pinning it to 2003 YT1 with a high degree of certainty.

The researchers said they aren’t sure how the little rock split off from 2003 YT1 but believe it’s part of a larger stream of dust that got flung off of the asteroid. And they offered a few potential explanations for how that stream formed: Maybe tiny micrometeorites routinely strike the bigger asteroid in the binary, fragmenting it like bullets striking a rock wall. Or maybe changes in heat cracked one of the asteroid’s surfaces, spitting small pieces into the dark.

One scenario the authors offered is that the shards are a result of the process that formed the 2003 YT1 system in the first place.

Most people likely imagine asteroids as great, big rocks, scaled-up versions of the stones they’d find here on Earth. But 2003 YT1, the authors wrote, is more likely a “rubble pile,” a jumble of stuff loosely bound together by gravity that coalesced into two orbiting bodies at some point in the last 10,000 years. The forces holding the masses together as individual asteroids are likely weak, and as the two piles spin chaotically around one another every couple hours, they could fling more of themselves into space.

There are other, more exotic possibilities, the authors wrote. Water ice might be sublimating (turning from solid to gas) off one of the asteroids’ surfaces and reforming as small balls of ice in open space. But that and other models are unlikely, the researchers wrote.

For now, we know that Earth has been visited by a little piece of a big asteroid. And that little piece is likely part of a stream of other little pieces that sometimes enter the Earth’s atmosphere unnoticed. And at some point far down the road, that big asteroid might follow its small children and slam into Earth. That fireball would be much, much bigger.

The paper describing these findings has not yet been peer-reviewed. A draft was published Oct. 16 in the preprint journal arXiv.

Japan’s 1st Moon Rover to Touch Down in 2021

The little robot, called Yaoki, will fly on the commercial Astrobotic lander.

An artist's illustration of Dymon's little Yaoki rover and Astrobotic's larger Peregrine lander on the surface of the moon.

An artist’s illustration of Dymon’s little Yaoki rover and Astrobotic’s larger Peregrine lander on the surface of the moon.(Image: © Astrobotic/Dymon)

The firsts keep rolling in for a 2021 moon mission. 

The Pittsburgh-based company Astrobotic plans to send its robotic Peregrine lander to the lunar surface in July 2021, on a mission sponsored by NASA’s Commercial Lunar Payload Services (CLPS) program. The flight will be the first for Peregrine and its rocket, United Launch Alliance’s new Vulcan Centaur vehicle, and may mark the first successful moon landing by a private spacecraft. (Another commercial lander and CLPS awardee, Intuitive Machines’ Nova-C, is scheduled to launch around the same time.)

Peregrine will also carry the United Kingdom’s first-ever moon rover, a little, four-legged craft built by London-based company Spacebit. And another little pioneer will be on the flight as well, it turns out: Japan’s first lunar rover, a tiny, wheeled robot named Yaoki, which was developed by Tokyo-based company Dymon.

“We are really excited to fly our mission with Astrobotic. This lunar rover Yaoki will result in the first lunar rover from Japan to explore the lunar surface, and marks a unique contribution to Peregrine’s mission,” Dymon CEO Shinichiro Nakajima said in a statement. 

“Yaoki has already successfully passed more than 100 tests and has the smallest but most effective rover wheels ever produced,” Nakajima added. “We are ready to complete development and fly in 2021.”

This first mission could be the start of something big on the moon for Dymon. The company aims to land 100 Yaokis by 2030, Dymon representatives have said. 

“Dymon’s unique, single-axle rover is a creative design that we look forward to delivering on Peregrine in 2021,” Astrobotic CEO John Thornton said in the same statement. “We’re excited to deliver this groundbreaking Japanese rover to the moon.”

Yaoki and the “walking rover” from Spacebit will have a lot of company on the 2021 flight. Peregrine is toting to the lunar surface about 30 payloads, 14 of which will be provided by NASA. 

The U.S. space agency is funding the mission, via CLPS, to the tune of $79.5 million. Intuitive Machines is getting $77 million for its first mission. (The company Orbit Beyond got $97 million in this round of CLPS awards, which were announced in May. But Orbit Beyond has since dropped out, saying it could not meet its September 2020 launch target.)Click here for more Space.com videos…Private Moon Landers – Target Landing Sites UnveiledVolume 0% 

NASA views the CLPS-funded missions as key enablers of its Artemis program of crewed lunar exploration. That project aims to put astronauts down near the lunar south pole by 2024 and establish a permanent, sustainable human presence on and around the moon by 2028. For example, some of the science gear flying on the robotic landers will assess stores of lunar water ice, an important resource for potential explorers and settlers.

To date, just three entities have successfully soft-landed a spacecraft on the moon: the Soviet Union, the United States and China. The private Israeli outfit SpaceIL and the government of India tried to follow suit this year with the Beresheet and Chandrayaan-2 missions, respectively, but both came up short.

Dymon isn’t the only Japanese company that wants to explore the moon. Tokyo-based ispace plans to put down a lander toting customer payloads in 2021, following that up with a rover-deploying surface mission in 2023.

This Poofy, Inflated Exoplanet Is One of the Puffiest Ever Seen

An artist's depiction of a hot Jupiter.

An artist’s depiction of a hot Jupiter. (Image: © NASA, ESA and G. Bacon (STScI))

Giant alien worlds known as hot Jupiters, with searing, close orbits to their host stars, can inflate like balloons. Now, astronomers have discovered a hot Jupiter so puffy that it is one of the least dense planets ever found, the researchers reported in a new study.

In the past three decades, astronomers have confirmed the existence of more than 4,000 worlds outside of Earth’s solar system. Scientists found that some of these exoplanets are very different from those seen in Earth’s solar system; for example, researchers have found hot Jupiters, gas giants that orbit their stars closer than Mercury does the sun.

Previous research showed that a number of hot Jupiters were unusually large but not especially massive, suggesting that they had inflated, perhaps due to heat from their stars. However, “it has not yet been understood why some hot Jupiters are so inflated,” lead author of the new study Luigi Mancini, at the Max Planck Institute for Astronomy in Heidelberg, Germany, told Space.com.

“There’s probably a list of 20 or so theories for the physics behind the inflation of these planets, such as tidal effects or strong electric currents,” study co-author Gaspar Bakos, an astrophysicist at Princeton University, told Space.com. “It hasn’t been figured out yet — inflating a planet that big is not easy.”

Now, scientists have discovered a highly inflated hot Jupiter, “a very low-density planet,” Bakos said. “The hope is that the more of these inflated planets we find, the more we understand why and how they are inflated.”

The researchers focused on a planet orbiting WASP-174, a yellow-white dwarf star about 1.25 times the mass of our sun and 1.35 times the sun’s diameter. This 2.2-billion-year-old star is located about 1,325 light-years from Earth.

Previous research spotted a giant planet that orbited at a distance of just 5.5% of an astronomical unit (AU) around this star. (One AU is the average distance between Earth and the sun, which is about 93 million miles, or 150 million kilometers.) This hot Jupiter, dubbed WASP-174b, seemed to be at most 1.3 times the mass of Jupiter, but estimates of its diameter ranged anywhere from 70% to 170% that of Jupiter.

To shed light on WASP-174b, the scientists in the new study analyzed data gathered by ground-based telescopes stretching across the Southern Hemisphere, plus the orbiting Transiting Exoplanet Survey Satellite (TESS).

The scientists pinned down WASP-174b’s diameter at more than 1.4 times that of Jupiter, meaning the planet is highly inflated. With a density of just 8.4 lbs. per cubic foot (0.135 grams per cubic centimeter), about the same density as light balsa wood, WASP-174b is among the least dense planets ever discovered.

WASP-174b’s highly inflated nature might make it an ideal subject for scientists to analyze an exoplanetary atmosphere, compared to less puffy targets that are smaller and harder to see, Bakos said.

“There will be future studies trying to detect what molecules make up its atmosphere,” Bakos said. “The better we characterize these inflated planets, the more data points we will have to create a consistent theory for why they exist.”

The research is described in a paper that was accepted for publication in the journal Astronomy & Astrophysics and that was posted to the preprint server arXiv.org on Sept. 18.

NASA scientist creates engine concept that can reach ‘close to the speed of light’

NASA scientist has created a new concept for an engine that he says can move “close to the speed of light” – all without any moving parts or need for fuel.

The paper, written by David Burns from NASA’s Marshall Space Flight Center, discusses a “helical engine” that can be used to travel across interstellar distances, send astronauts to the moon in approximately one second and Mars in less than 13 minutes, according to The Sun, which first reported the news.

“A new concept for in-space propulsion is proposed in which propellant is not ejected from the engine, but instead is captured to create a nearly infinite specific impulse,” Burns wrote in the paper’s abstract. “The engine accelerates ions confined in a loop to moderate relativistic speeds, and then varies their velocity to make slight changes to their mass. The engine then moves ions back and forth along the direction of travel to produce thrust. This in-space engine could be used for long-term satellite station-keeping without refueling.”

“It could also propel spacecraft across interstellar distances, reaching close to the speed of light,” Burns added in the abstract. “The engine has no moving parts other than ions traveling in a vacuum line, trapped inside electric and magnetic fields.”

Burns’ idea is novel, as it completely removes one of the heaviest components of space flight–fuel.

NASA is looking into the possibility of using ice and water on the surface of the moon as rocket fuel, but any potential solution would likely be years, if not decades, away.

The concept, which Burns admitted he is not sure is viable, takes inspiration from high-tech particle accelerators, similar to what is seen at the Large Hadron Collider at CERN.

“If someone says it doesn’t work, I’ll be the first to say, it was worth a shot,” Burns said in an interview with New Scientist. “You have to be prepared to be embarrassed. It is very difficult to invent something that is new under the sun and actually works.”

A Faux Saturn Moon Titan on Earth Could Solve Solar System Mystery

Dunes on Saturn's moon Titan as seen by the Cassini probe in 2006.

Dunes on Saturn’s moon Titan as seen by the Cassini probe in 2006.(Image: © NASA/JPL)

Big, schmancy compounds keep popping up all over the solar system, and new research may help clear up confusion about how they form in so many places.

That research is based on laboratory experiments inspired by a weird quirk scientists have noticed about sprawling dune fields on Saturn’s moon Titan. These dunes are full of compounds called polycyclic aromatic hydrocarbons that have ring-like structures. On Titan, the dunes stockpile a significant proportion of the moon’s carbon. And because that moon is one of astrobiologists’ most tempting quarries for potentially finding life beyond Earth, carbon matters.

“These dunes are pretty large,” study senior author Ralf Kaiser, a chemist at the University of Hawaii at Manoa, told Space.com, nearly as tall as the Great Pyramid in Egypt, he added. “If you want to understand the carbon and hydrocarbon cycle and the processes of hydrocarbons on Titan, it’s really important to understand, of course, where the dominant source of carbon comes from.”

On Titan, there’s a straightforward mechanism that scientists know likely builds polycyclic aromatic hydrocarbons: These large molecules can form in the moon’s thick atmosphere and settle down to the surface. But the same family of compounds has been found on plenty of worlds that boast no such atmosphere, like the dwarf planets Pluto and Ceres and the Kuiper Belt object Makemake.

Kaiser and his colleagues wanted to figure out how polycyclic aromatic hydrocarbons could come to exist on a world lacking an atmosphere to create them. And when the researchers looked at Titan, they saw a clue: Where the dunes are, there aren’t many hydrocarbon ices that are otherwise fairly common on that moon.

The researchers wondered whether a second process, one taking place on the surface, could turn ices like acetylene into polycyclic aromatic hydrocarbons. In particular, the scientists thought the culprit might be galactic cosmic rays, energetic particles that ricochet across space.

So the researchers designed an experiment: Take some acetylene ice, expose it to a process that imitates galactic cosmic rays, and see what happens. They mimicked the effect of 100 years’ worth of pummeling from these particles, then measured the amounts of different compounds that had formed.

The scientists found several different flavors of polycyclic aromatic hydrocarbons. This suggested to the team that the interaction between hydrocarbon ices and galactic cosmic rays could indeed explain the prevalence of the compounds even where no atmosphere can form them.

“This is a pretty versatile process which can happen anywhere,” Kaiser said. That includes not just Titan, but also other moons and asteroids, but even grains of interstellar dust and neighboring solar systems, he said.

Next, he and his colleagues want to pin down what specific process is causing the transformation, Kaiser said. That will be tricky, he said, since the ionizing radiation the team used to simulate cosmic galactic rays includes multiple simultaneous processes.

The line of research is intriguing aesthetically as well as scientifically, Michael Malaska, who studies planetary ices at NASA’s Jet Propulsion Laboratory in California and who wasn’t involved in the current research, told Space.com in an email. “Their work further supports that some of Titan’s sand may glow pretty colors under UV light,” he wrote.

The research was described in a paper published yesterday (Oct. 16) in the journal Science Advances.

Hubble Space Telescope Spots Interstellar Comet Borisov

NASA’s venerable Hubble Space Telescope recently turned its eyes to interstellar visitor Comet 2I/Borisov and caught a surprise: The interloper looks a lot like comets from our own solar system.

Hubble’s observations from earlier this month show that the dust, structure and chemical composition of the interstellar comet look a lot like those of the comets from our own cosmic neighborhood. Among the observed features was the classic halo of dust that comets usually have around their nuclei, or hearts.

“Though another star system could be quite different from our own, the fact that the comet’s properties appear to be very similar to those of the solar system’s building blocks is very remarkable,” Amaya Moro-Martin, an assistant astronomer at the Space Telescope Science Institute in Baltimore, which manages Hubble operations, said in a statement from NASA.

Related: Interstellar Comet Borisov Looks Pretty Normal

NASA's Hubble Space Telescope captured this view of the interstellar object Comet 2I/Borisov on Oct. 12, 2019.
NASA’s Hubble Space Telescope captured this view of the interstellar object Comet 2I/Borisov  on Oct. 12, 2019.

Until Comet 2I/Borisov appeared, all cataloged comets came from two locations: the Kuiper Belt — an area near the edge of our solar system where larger objects, such as Pluto and MU69, reside — and the Oort Cloud of icy objects located about 1 light-year from our sun. (A light-year is the distance light travels in a year, which is roughly 6 trillion miles, or 10 trillion kilometers.) 

Comets that originate in the outskirts of the solar system can become visible to people on Earth when they get kicked into the inner solar system through gravitational nudges, perhaps via stars passing by. As a comet gets closer to the sun, its icy surface begins to vaporize, leaving behind a “tail” of dust and gas. Cometary orbits are usually elliptical, meaning a comet’s path in space appears as a stretched-out oval that makes a close pass around the sun before heading toward the outskirts of the solar system. But Comet 2I/Borisov is different; its orbit is hyperbolic, resembling an open-ended arc, because it is cruising into the solar system briefly before leaving forever.Click here for more Space.com videos…See Insterstellar Comet Borisov’s Orbit – AnimationVolume 0% 

Comet 2I/Borisov is only the second known interstellar visitor to our solar system. The first was an object known as 1I/’Oumuamua, an elongated, rock-like object that made a brief pass within Mercury’s orbit in 2017 before zooming away, presumably forever. Borisov, fortunately, is expected to stay within the solar system until mid-2020, providing more time for observations. The comet’s closest approach to the sun, which will occur in December, will be at roughly 186 million miles (300 million km), or twice Earth’s average distance from the sun.

Although interstellar visitors have only recently been proven with observations, a new study suggests that interstellar objects are quite common, Hubble astronomers said. There could be thousands of such objects within the solar system at any one time, although most are beyond the reach of modern-day telescopes’ observational capabilities. This makes observations of Borisov valuable, especially because it is so different from ‘Oumuamua.Click here for more Space.com videos…Interstellar Comet 2I/Borisov – What We Know So FarVolume 0% 

“Whereas ‘Oumuamua appeared to be a rock, Borisov is really active, more like a normal comet,” observation leader David Jewitt, of the University of California, Los Angeles, said in the same statement. “It’s a puzzle why these two are so different.”

Hubble’s observations of Borisov happened on Oct. 12, when the comet was about 260 million miles (418 million km) from Earth. Future Hubble observations are planned at least through January, with more proposals being considered for later in 2020.

China’s Chang’e 4 Completes 10 Lunar Days on Far Side of the Moon

An image of the surface of Von Kármán crater taken by the Yutu 2 rover.

An image of the surface of Von Kármán crater taken by the Yutu 2 rover. (Image: © CNSA/CLEP)

China’s Chang’e 4 mission has completed 10 lunar days of activity on the far side of the moon, returning new images and carrying out science tasks. 

Both the Chang’e 4 lander and the Yutu 2 rover entered a dormant state on Oct. 5 in preparation to survive a 10th lunar night. During the roughly two-week-long lunar night, temperatures can drop to as low as minus 310 degrees Fahrenheit (minus 190 degrees Celsius), threatening the spacecraft’s health every time.

The rover and the lander began lunar day 10 on Sept. 22 and 23, respectively, according to the Chinese Lunar Exploration Program. Yutu 2 drove just 16.7 feet (5.1 meters) on day 10 — the shortest distance it has covered during a single day. 

Related: Chang’e 4 in Pictures: China’s Mission to the Moon’s Far SideClick here for more Space.com videos…CLOSEVolume 0%This video will resume in 2 seconds 

The short distance may indicate that the rover is busy carrying out further analyses of an unusual material it discovered at the center of an impact crater during its eighth day of work. The Chang’e 4 team has released few details, but lunar scientists have suggested that the substance could be impact melt glass from meteor strikes.

Yutu 2’s predecessor, the Chang’e 3 mission Yutu rover, lost mobility during its second lunar day. While the apparent short-circuit issue that prematurely halted the first Yutu has been addressed, Yutu 2 is in uncharted territory regarding the wear and tear experienced from traversing the harsh lunar surface.

The rover has covered a total of 950 feet (289 m) and is heading west from Statio Tianhe, the formal name of the Chang’e 4 landing site. The Yutu 2 rover was designed to last three months but has greatly exceeded this expectation.

Yutu 2 passes close to a small impact crater.
Yutu 2 passes close to a small impact crater. 

China has not issued regular maps of Yutu 2’s roving. But Philip Stooke, a cartographer at the Centre for Planetary Science and Exploration at Western University in Ontario, Canada, has pieced together information from papers in science journals and occasional hints on social media to illustrate the route taken by the rover. 

NASA’s Lunar Reconnaissance Orbiter has imaged the Chang’e 4 spacecraft a number of times while passing overhead. Some of the images even show the tracks made by Yutu 2.

Chang’e 4 made its historic touchdown in Von Kármán crater on Jan. 3, becoming the first robotic mission to land softly on the far side of the moon. Yutu 2 was deployed about 12 hours after landing. 

NASA's Lunar Reconnaissance Orbiter imaged the Chang'e 4 lander and rover from lunar orbit, with roving tracks visible as the sequence develops.
NASA’s Lunar Reconnaissance Orbiter imaged the Chang’e 4 lander and rover from lunar orbit, with roving tracks visible as the sequence develops. 

An Oct. 6 update from the China Lunar Exploration Program via its Weibo social media account states that both spacecraft and their science payloads are working well. 

The two spacecraft have been carrying out a range of measurements using neutron detectors, radiation instruments, infrared spectrometers and radio devices. Data gathered by the Chang’e 4 lander and Yutu 2 rover are providing insight into the nature and history of the far side of the moon. 

Yutu 2 roving route for lunar days one to nine of the Chang'e 4 mission.
Yutu 2 roving route for lunar days one to nine of the Chang’e 4 mission.

The far side of the moon is never visible from Earth because of tidal locking, so contact with the two Chang’e 4 spacecraft is facilitated by the Queqiao communications satellite. That spacecraft orbits a special, gravitationally stable point beyond the moon. 

Sunrise over the landing site in Von Kármán crater will occur Oct. 21; Yutu 2 will wake for lunar day 11 on Oct. 22 and the lander will do so about 24 hours later.

Supernova morphs and its shock waves reverse in stunning new NASA video

NASA released a new video that shows how a supernova morphs and moves over a period of 13 years.

Cassiopeia A, or Cas A, as the debris field is known, was probably generated after a star’s explosion in 1680, according to the space agency.

The shock waves in blue can be seen as they pulse through space in data collected between 2000 and 2013 by NASA’s Chandra X-Ray Observatory.

“As the blast wave travels outwards at speeds of about 11 million miles [18 million km] per hour, it encounters surrounding material and slows down, generating a second shock wave,” Chandra mission personnel said in a statement.

A view of Cassiopeia A that includes Chandra X-ray Observatory data. (X-ray: NASA/CXC/RIKEN/T. Sato et al.; Optical: NASA/STScI)

A view of Cassiopeia A that includes Chandra X-ray Observatory data. (X-ray: NASA/CXC/RIKEN/T. Sato et al.; Optical: NASA/STScI) (X-ray: NASA/CXC/RIKEN/T. Sato et al.; Optical: NASA/STScI)

This “reverse shock,” the agency said, “travels backwards, similar to how a traffic jam travels backwards from the scene of an accident on a highway.”

According to Space.com, Cas A was the first object that Chandra observed not long after it launched out to space on July 23, 1999.

NASA noted that other observations from Chandra over the years have shown some of the elements necessary for life in the explosion and have produced 3D models of the supernova remnant.

The full video can be seen here.

A second interstellar visitor has arrived. Astronomers think they know where it came from

Artist's illustration of 'Oumuamua, the first known interstellar object spotted in our solar system.

Artist’s illustration of ‘Oumuamua, the first known interstellar object spotted in our solar system. (M. Kornmesser/ESO)

For the second time ever, astronomers have detected an interstellar object plunging through our solar system. But this time, researchers think they know where it came from.

Gennady Borisov, an amateur astronomer working with his own telescope in Crimea, first spotted the interstellar comet on Aug. 30. His find made the object the first interstellar visitor discovered since oblong ‘Oumuamua flashed through our solar neighborhood back in 2017. Now, in a new paper, a team of Polish researchers has calculated the path this new comet — known as Comet 2I/Borisov or (in early descriptions) as C/2019 Q4 — took to arrive in our sun’s gravity well. And that path leads back to a binary red dwarf star system 13.15 light-years away, known as Kruger 60.

When you rewind Comet Borisov’s path through space, you’ll find that 1 million years ago, the object passed just 5.7 light-years from the center of Kruger 60, moving just 2.13 miles per second (3.43 kilometers per second), the researchers wrote.

That’s fast in human terms —— about the top speed of an X-43A Scramjet, one of the fastest aircraft ever built. But an X-43A Scramjet can’t overcome the sun’s gravity to escape our solar system. And the researchers found that if the comet were really moving that slowly at a distance of no more than 6 light-years from Kruger 60, it probably wasn’t just passing by. That’s probably the star system it came from, they said. At some point in the distant past, Comet Borisov lively orbited those stars the way comets in our system orbit ours.

Ye Quanzhi, an astronomer and comet expert at the University of Maryland who wasn’t involved in this paper, told Live Science that the evidence pinning Comet 2I/Borisov to Kruger 60 is pretty convincing based on the data available so far.

“If you have an interstellar comet and you want to know where it came from, then you want to check two things,” he said. “First, has this comet had a small pass distance from a planetary system? Because if it’s coming from there, then its trajectory must intersect with the location of that system.”

Though the 5.7 light-years between the new comet and Kruger may seem bigger than a “small gap” — nearly 357,000 times Earth’s distance from the sun — it’s close enough to count as “small” for these sorts of calculations, he said.

“Second,” Ye added, “usually comets are ejected from a planetary system due to gravitational interactions with major planets in that system.”

In our solar system, that might look like Jupiter snagging a comet that’s falling toward the sun, slingshotting it around in a brief, partial orbit and then flinging it away toward interstellar space.

“This ejection speed has a limit,” Ye said. “It can’t be infinite because planets have a certain mass,” and the mass of a planet determines how hard it can throw a comet into the void. “Jupiter is pretty massive,” he added, “but you can’t have a planet that’s 100 times more massive than Jupiter because then it would be a star.”

That mass threshold sets an upper limit on the speeds of comets escaping star systems, Ye said. And the authors of this paper showed that Comet 2I/Borisov fell within the minimum speed and distance from Kruger 60 to suggest it originated there —assuming their calculations of its trajectory are correct.

Studying interstellar comets is exciting, Ye said, because it offers a rare opportunity to study distant solar systems using the precise tools scientists employ when examining our own. Astronomers can look at Comet 2I/Borisov using telescopes that might reveal details of the comet’s surface. They can figure out whether it behaves like comets in our own system (so far, it has) or does anything unusual, like ‘Oumuamua famously did. That’s a whole category of research that usually isn’t possible with distant solar systems, where small objects only ever appear —— if they’re visible at all —— as faint, discolored shadows on their suns.

This research, Ye said, means that anything we learn about Comet Borisov could be a lesson about Kruger 60, a nearby star system where no exoplanets have been discovered. ‘Oumuamua, by contrast, seems to have come from the general direction of the bright star Vega, but according to NASA’s Jet Propulsion Laboratory, researchers don’t believe that’s where the object originally came from, instead suggesting it likely came from a newly-forming star system (though researchers aren’t sure which one).. That would make Comet Borisov the first interstellar object ever traced to its home system, if these results are confirmed.

However, the paper’s authors were careful to point out that these results shouldn’t yet be considered conclusive. Astronomers are still collecting more data about Comet 2I/Borisov’s path through space, and additional data may reveal that the original trajectory was wrong and that the comet came from somewhere else.

The paper tracing the comet’s origin has not yet been published in a peer-reviewed journal, but it’s available on the preprint server arXiv.

Asteroid may collide with Earth ESA Warns

Asteroid may collide with Earth, ESA warns: ‘Non-zero… probability’

Asteroids known as near-Earth objects are among the most dangerous space items, with space agencies around the world keeping a close eye on them. The European Space Agency is paying particular attention to asteroid 2019 SU3, which may collide with Earth as soon as 70 years from now.

The space rock was recently added to the ESA’s Risk List due to the potential for it to collide with Earth on Sept. 16, 2084.

“The Risk List is a catalog of all objects for which a non-zero impact probability has been detected,” the ESA wrote on its website. “Each entry contains details on the Earth approach posing the highest risk of impact (as expressed by the Palermo Scale). It includes its date, size, velocity and probability.”

An artist's illustration of asteroids, or near-Earth objects, that highlight the need for a complete Space Situational Awareness system.

An artist’s illustration of asteroids, or near-Earth objects, that highlight the need for a complete Space Situational Awareness system. (ESA – P.Carril)

2019 SU3 is also on the ESA’s Priority List, which the European agency says is used to “observe especially newly discovered objects into four categories: urgent, necessary, useful and low priority.”

The ESA said 2019 SU3 is expected to come within 0.00079 astronomical units, approximately 73,000 miles, when it passes Earth in 2084. Asteroids that come within 0.05 astronomical units and measure more than 460 feet in diameter are known as “potentially hazardous” NEOs, according to NASA.

NEOs are tracked by NASA’s Center for Near Earth Object Studies (CNEOS). NASA is also tracking 2019 SU3, but its data only goes out to 2077, seven years before the data from the ESA.

According to a 2018 report put together by Planetary.org, there are more than 18,000 NEOs.

Cosmonaut Alexei Leonov, Who Was First to Walk in Space, Dies at 85

Leonov was on the short list to fly to the moon.

Soviet-era cosmonaut Alexei Leonov, who in 1965 became the first person to walk in space before co-leading the first joint mission between Russia and the United States, has died at the age of 85.

Leonov died on Friday (Oct. 11) at the Burdenko military hospital in Moscow after a long illness.

“One of the first cosmonauts of the world space era, forever devoted to his country and his work, he inscribed himself in golden letters in the world history of space,” said Roscosmos, Russia’s federal space corporation, in a statement. “With Alexei Arkhipovich a whole era has gone.”

Selected alongside Yuri Gagarin among the first 20 Soviet Air Force pilots to train as cosmonauts in 1960, Leonov flew twice into space, logging a total of 7 days and 32 minutes off the planet.

Launched on Voskhod 2, the world’s 17th human spaceflight, on March 18, 1965, Leonov made history as the first person to exit his spacecraft for an extravehicular activity (EVA).

“The Earth is round!” he exclaimed, as he caught his first view of the world. “Stars were to my left, right, above and below me. The light of the sun was very intense and I felt its warmth on the part of my face that was not protected by a filter,” said Leonov in a 2015 interview with the Fédération Aéronautique Internationale (FAI) on the 50th anniversary of his spacewalk.

“What remain etched in my memory was the extraordinary silence,” he said.

Archived image from the Fédération Aéronautique Internationale (FAI) report certifying that the first spacewalk was conducted by cosmonaut Alexei Leonov on March 18, 1965.
Archived image from the Fédération Aéronautique Internationale (FAI) report certifying that the first spacewalk was conducted by cosmonaut Alexei Leonov on March 18, 1965.

Leonov’s historic EVA, however, almost spelled his end. 

After several minutes outside, his spacesuit ballooned, making it very difficult for him to maneuver. His crewmate, Pavel Belayev, unable to do anything to assist, Leonov made the decision to release air from his suit in order to be able to re-enter his capsule.

“I decided to drop the pressure inside the suit … knowing all the while that I would reach the threshold of nitrogen boiling in my blood, but I had no choice,” Leonov told the FAI, the world governing body that certifies aviation and space records.

Ultimately, Leonov made it safely back inside after 12 minutes and 9 seconds floating outside his spacecraft. He and Belyayev returned to Earth the next day on March 19, 1965, having shown it was possible for a human to survive working in the vacuum in space.

In Pictures: The Most Memorable Spacewalks in HistoryClick here for more Space.com videos…First Human Spacewalker Nearly Died In SpaceVolume 0% 

Leonov’s second spaceflight came a decade later with the lift off of the Apollo-Soyuz Test Project (ASTP), the first mission conducted jointly between the United States and Russia.

Launched on July 15, 1975, Leonov and his crewmate, Valery Kubasov, docked their Soyuz spacecraft two days later to an Apollo spacecraft carrying astronauts Thomas Stafford, Deke Slayton and Vance Brand.

“The best part of our joint flight was the occasion when we opened the hatch and I saw the face of Tom Stafford,” said Leonov, recalling the ASTP mission on its 35th anniversary in 2010. “I said, ‘Hello Tom! Hello Deke!’ and at this moment we shook hands.”

The two crews spent almost two days together, conducting scientific experiments and taking part in cultural exchanges. The mission served a precursor to the later Shuttle-Mir flights and the establishment of the International Space Station.

Related: Apollo-Soyuz Test Project: 1st U.S.-Russian Spaceflight PicturesThese three stills are from the external movie camera on the Soviet Voskhod 2, which recorded Aleksey Leonov making history’s first spacewalk on March 18, 1965. (Image credit: NASA/Asif Siddiqi)

After parting ways with the Americans, Leonov and Kubasov landed safely on July 21, 1975. The touch down marked the end of Leonov’s spaceflight career, having completed 113 orbits of Earth on his two missions.

“We were saddened to learn of the passing of Russian cosmonaut Alexei Leonov,” said NASA astronaut Jessica Meir as a spacewalk by two of her crewmates came to its close outside the International Space Station on Friday.

“Though we mourn his passing,” added the station’s commander, Luca Parmitano with the European Space Agency, “it is somewhat fitting that Leonov left us on the day of a spacewalk. His 12-minute excursion outside the Voskhod 2 spacecraft more than a half century ago began a chapter in human spaceflight that brought us to the moon and which will bring the world to distant ports of exploration in the cosmos in the years ahead.”

Alexei Arkhipovich Leonov was born on May 30, 1934, in the town of Listvyanka, near Mariinsk in Siberia. A budding artist from a young age, Leonov enrolled at the Academy of Arts in Riga in 1953 before attending the Chuguyev Air Force School in Kharkov, Ukraine, where he graduated in 1957.

He was serving as a Soviet Air Force parachute instructor when he was selected for the first cosmonaut class three years later. His first assignment was as backup to Valeri Bykovsky on the Vostok 5 mission in 1963.

After returning from his 1965 Voskhod 2 mission, Leonov began training for a mission to the moon. First preparing for a circumlunar flight, a feat accomplished by NASA’s Apollo 8 crew in December 1968, Leonov was one of only three candidates for a Soviet moon landing. Rocket failures though, ultimately led to the program’s cancellation.

Leonov was then assigned to command the second mission to launch to Russia’s first space station, Salyut 1. One of his two Soyuz 11 crewmates however, fell ill days before the June 1971 launch, resulting in their backups flying in their place. (The Soyuz 11 mission later ended in tragedy, when a depressurization during re-entry led to all three cosmonauts being killed.)

Giant Leaps: Biggest Milestones of Human SpaceflightClick here for more Space.com videos…OTD in Space – July 15: Apollo-Soyuz LaunchVolume 0% 

Following his lead of the Soviet side of the Apollo-Soyuz Test Project, Leonov headed the cosmonaut team until January 1982, when he resigned to become the deputy director of the Gagarin Cosmonaut Training Center in Star City. Ten years later, he left the space program for a management position at Alfa Bank, one of the largest private commercial banks in Russia.

Throughout his career, Leonov continued to pursue his passion for art, flying colored pencils on his spaceflights and becoming the first to sketch in Earth orbit. His subsequent drawings and paintings have been exhibited worldwide, appeared on postage stamps and were published in several collected volumes of his work.

For his service to his nation, Leonov was twice named a Hero of the Soviet Union and awarded the Order of Lenin, among many other honors. A founding member of the Association of Space Explorers, Leonov was inducted into the International Space Hall of Fame at the New Mexico Museum of Space History in 1976 and International Air & Space Hall of Fame at the San Diego Air & Space Museum in 2001.

Cosmonaut Alexei Leonov aboard the Apollo-Soyuz Test Project with a sketch he made of one of his American crewmates.
Cosmonaut Alexei Leonov aboard the Apollo-Soyuz Test Project with a sketch he made of one of his American crewmates.

Leonov was further honored as the namesake for a crater on the moon and a spaceship in Arthur C. Clarke’s “2010: Odyssey Two.” In 2017, he was portrayed in the Russian feature film “The Age of Pioneers” (also known as “Spacewalk”) about his Voskhod 2 mission.

In 2004, Leonov co-authored the joint autobiography “Two Sides of the Moon: Our Story of the Cold War Space Race” with Apollo 15 moonwalker David Scott.

Leonov was married to Svetlana Pavlovna Dozenko in 1959, and together they had two children, Viktoria and Oksana (the earlier preceded him in death in 1996).