Astronomers Just Found Cosmic ‘Superhighways’ For Fast Travel Through The Solar System

Invisible structures generated by gravitational interactions in the Solar System have created a “space superhighway” network, astronomers have discovered.

These channels enable the fast travel of objects through space, and could be harnessed for our own space exploration purposes, as well as the study of comets and asteroids.

By applying analyses to both observational and simulation data, a team of researchers led by Nataša Todorović of Belgrade Astronomical Observatory in Serbia observed that these superhighways consist of a series of connected arches inside these invisible structures, called space manifolds – and each planet generates its own manifolds, together creating what the researchers have called “a true celestial autobahn”.

This network can transport objects from Jupiter to Neptune in a matter of decades, rather than the much longer timescales, on the order of hundreds of thousands to millions of years, normally found in the Solar System.

Finding hidden structures in space isn’t always easy, but looking at the way things move around can provide helpful clues. In particular, comets and asteroids.

There are several groups of rocky bodies at different distances from the Sun. There’s the Jupiter-family comets (JFCs), those with orbits of less than 20 years, that don’t go farther than Jupiter’s orbital paths.

Centaurs are icy chunks of rocks that hang out between Jupiter and Neptune. And the trans-Neptunian objects (TNOs) are those in the far reaches of the Solar System, with orbits larger than that of Neptune.

To model the pathways connecting these zones, as TNOs transition through the Centaur category and end up as JFCs, timescales can range from 10,000 to a billion years. But a recent paper identified an orbital gateway connected to Jupiter that seems much quicker, governing the paths of JFCs and Centaurs.

Although that paper didn’t mention Lagrange points, it’s known that these regions of relative gravitational stability, created by the interaction between two orbiting bodies (in this case, Jupiter and the Sun), can generate manifolds. So Todorović and her team set about investigating.

They employed a tool called the fast Lyapunov indicator (FLI), usually used to detect chaos. Since chaos in the Solar System is linked to the existence of stable and unstable manifolds, on short timescales, the FLI can capture traces of manifolds, both stable and unstable, of the dynamical model it’s applied to.

“Here,” the researchers wrote in their paper, “we use the FLI to detect the presence and global structure of space manifolds, and capture instabilities that act on orbital time scales; that is, we use this sensitive and well-established numerical tool to more generally define regions of fast transport within the Solar System.”

They collected numerical data on millions of orbits in the Solar System, and computed how these orbits fit with known manifolds, modelling the perturbations generated by seven major planets, from Venus to Neptune.

And they found that the most prominent arches, at increasing heliocentric distances, were linked with Jupiter; and most strongly with its Lagrange point manifolds. All Jovian close encounters, modelled using test particles, visited the vicinity of Jupiter’s first and second Lagrange points.

A few dozen or so particles were then flung into the planet on a collision course; but a vast number more, around 2,000, became uncoupled from their orbits around the Sun to enter hyperbolic escape orbits. On average, these particles reached Uranus and Neptune 38 and 46 years later, respectively, with the fastest reaching Neptune in under a decade.

The majority – around 70 percent – reached a distance of 100 astronomical units (Pluto’s average orbital distance is 39.5 astronomical units) in less than a century.

Jupiter’s huge influence is not a huge surprise. Jupiter is, apart from the Sun, the most massive object in the Solar System. But the same structures would be generated by all the planets, on timescales commensurate with their orbital periods, the researchers found.

This new understanding could help us better understand how comets and asteroids move around the inner Solar System, and their potential threat to Earth. And, of course, there’s the aforementioned benefit to future Solar System exploration missions.

But we may need to get a better fix on how these gateways work, to avoid those collision courses; and it won’t be easy.

“More detailed quantitative studies of the discovered phase-space structures … could provide deeper insight into the transport between the two belts of minor bodies and the terrestrial planet region,” the researchers wrote in their paper.

“Combining observations, theory, and simulation will improve our current understanding of this short-term mechanism acting on the TNO, Centaur, comet, and asteroid populations and merge this knowledge with the traditional picture of the long-term chaotic diffusion through orbital resonances; a formidable task for the large range of energies considered.”

The research has been published in Science Advances.

Have We Finally Found Evidence For A Parallel Universe?

We can imagine a very large number of possible outcomes that could have resulted from the conditions... [+] our Universe was born with. The fact that all 10^90 particles contained within our Universe unfolded with the interactions they experienced and the outcomes that they arrived at over the past 13.8 billion years led to all the intricacies of our experiences, including our very existence. It is possible, if there were enough chances, that this could occur many times, leading to a scenario that we think of as "infinite parallel Universes" to contain all possible outcomes, including the roads our Universe didn't travel, but we can only observe the one Universe we have.

We can imagine a very large number of possible outcomes that could have resulted from the conditions JAIME SALCIDO/SIMULATIONS BY THE EAGLE COLLABORATION

For some of us, the idea of parallel Universes spark our wildest dreams. If there are other Universes where certain events had different outcomes — where just one crucial decision went a different way — perhaps there could be some way to access them. Perhaps particles, fields, or even people could be transported from one to the other, enabling us to live in a Universe that’s better, in some ways, than our own. These ideas have a foothold in theoretical physics as well, from the myriad of possible outcomes from quantum mechanics as well as ideas of the multiverse. But do they have anything to do with observable, measurable reality? Recentlya claim has surfaced asserting that we’ve found evidence for parallel Universes, and Jordan Colby Cox wants to know what it means, asking:

There is an article floating around that claims that physicists in Antarctica have found evidence for a parallel universe. I find this highly unlikely, but I wanted to be sure by asking you to address the veracity of the story.

Let’s take a look and find out.

An illustration of multiple, independent Universes, causally disconnected from one another in an... [+] ever-expanding cosmic ocean, is one depiction of the Multiverse idea.

An illustration of multiple, independent Universes, causally disconnected from one another

From a physics point of view, parallel Universes are one of those intriguing ideas that’s imaginative, compelling, but very difficult to test. They first arose in the context of quantum physics, which is notorious for having unpredictable outcomes even if you know everything possible about how you set up your system. If you take a single electron and shoot it through a double slit, you can only know the probabilities of where it will land; you cannot predict exactly where it will show up.

One remarkable idea — known as the many-worlds interpretation of quantum mechanics — postulates that all the outcomes that can possibly occur actually do happen, but only one outcome can happen in each Universe. It takes an infinite number of parallel Universes to account for all the possibilities, but this interpretation is just as valid as any other. There are no experiments or observations that rule it out.

The Many Worlds Interpretation of quantum mechanics holds that there are an infinite number of... [+] parallel Universes that exist, holding all possible outcomes of a quantum mechanical system, and that making an observation simply chooses one path. This interpretation is philosophically interesting, but may add nothing-of-value when it comes to actual physics.

The Many Worlds Interpretation of quantum mechanics

A second place where parallel Universes arise in physics is from the idea of the multiverse. Our observable Universe began 13.8 billion years ago with the hot Big Bang, but the Big Bang itself wasn’t the very beginning. There was a very different phase of the Universe that occurred previously to set up and give rise to the Big Bang: cosmological inflation. When and where inflation ends, a Big Bang occurs.

But inflation doesn’t end everywhere at once, and the places where inflation doesn’t end continue to inflate, giving rise to more space and more potential Big Bangs. Once inflation begins, in fact, it’s virtually impossible to stop inflation from occurring in perpetuity at least somewhere. As time goes on, more Big Bangs — all disconnected from one another — occur, giving rise to an uncountably large number of independent Universes: a multiverse.

While many independent Universes are predicted to be created in an inflating spacetime, inflation... [+] never ends everywhere at once, but rather only in distinct, independent areas separated by space that continues to inflate. This is where the scientific motivation for a Multiverse comes from, and why no two Universes will ever collide. There simply aren't enough Universes created by inflation to hold every possible quantum outcome owing to the interactions of particles within an individual Universe.

While many independent Universes are predicted to be created in an inflating spacetime, inflation… [+]KAREN46 / FREEIMAGES

The big problem for both of these ideas is that there’s no way to test or constrain the prediction of these parallel Universes. After all, if we’re stuck in our own Universe, how can we ever hope to access another one? We have our own laws of physics, but they come along with a whole host of quantities that are always conserved.

Particles don’t simply appear, disappear, or transform; they can only interact with other quanta of matter and energy, and the outcomes of those interactions are similarly governed by the laws of physics.

In all the experiments we’ve ever performed, all the observations we’ve ever recorded, and all the measurements ever made, we’ve never yet discovered an interaction that demands the existence of something beyond our own, isolated Universe to explain.

The Standard Model of particle physics accounts for three of the four forces (excepting gravity),... [+] the full suite of discovered particles, and all of their interactions. Whether there are additional particles and/or interactions that are discoverable with colliders we can build on Earth is a debatable subject, but there are still many puzzles that remain unanswered, such as the observed absence of strong CP violation, with the Standard Model in its current form.

The Standard Model of particle physics accounts for three of the four forces (excepting gravity),… [+]CONTEMPORARY PHYSICS EDUCATION PROJECT / DOE / NSF / LBNL

Unless, of course, you’ve read the headlines that came out this week, reporting that scientists in Antarctica have discovered evidence for the existence of parallel Universes. If this were true, it would be absolutely revolutionary. It’s a grandiose claim that would show us that the Universe as we currently conceive of it is inadequate, and there’s much more out there to learn about and discover than we ever thought possible.

Not only would these other Universes be out there, but matter and energy from them would have the capability to cross over to and interact with matter and energy in our own Universe. Perhaps, if this claim were correct, some of our wildest science fiction dreams would be possible. Perhaps you could travel to a Universe:

  • Where you chose the job overseas instead of the one that kept you in your country?
  • Where you stood up to the bully instead of letting yourself be taken advantage of?
  • Where you kissed the one-who-got-away at the end of the night, instead of letting them go?
  • Or where the life-or-death event that you or your loved one faced at some point in the past had a different outcome?
A representation of the different parallel "worlds" that might exist in other pockets of the... [+] multiverse, or anyplace else that theoretical physicists can concoct.

A representation of the different parallel “worlds” that might exist in other pockets of the… [+]PUBLIC DOMAIN

So what was the remarkable evidence that demonstrates the existence of a parallel Universe? What observation or measurement was made that brought us to this remarkable and unexpected conclusion?

The ANITA (ANtarctic Impulsive Transient Antenna) experiment — a balloon-borne experiment that’s sensitive to radio waves — detected radio waves of a particular set of energies and directions coming from beneath the Antarctic ice. This is good; it’s what the experiment was designed to do! In both theory and in practice, we have all sorts of cosmic particles traveling through space, including the ghostly neutrino. While many of the neutrinos that pass through us come from the Sun, stars, or the Big Bang, some of them come from colossally energetic astrophysical sources like pulsars, black holes, or even mysterious, unidentified objects.

Researchers prepare to launch the Antarctic Impulsive Transient Antenna (ANITA) experiment, which... [+] picked up signals of impossible-seeming particles as it dangled from its balloon over Antarctica.

Researchers prepare to launch the Antarctic Impulsive Transient Antenna (ANITA) experiment

These neutrinos also come in a variety of energies, with the most energetic ones (unsurprisingly) being the rarest and, to many physicists, the most interesting. Neutrinos are mostly invisible to normal matter — it would take about a light-year’s worth of lead to have a 50/50 shot of stopping one — so they can realistically come from any direction.

However, most of the high-energy neutrinos that we see aren’t produced from far away, but are produced when other cosmic particles (also of extremely high energies) strike the upper atmosphere, producing cascades of particles that also result in neutrinos. Some of these neutrinos will pass through the Earth almost completely, only interacting with the final layers of Earth’s crust (or ice), where they can produce a signal that our detectors are sensitive to.

While cosmic ray showers are common from high-energy particles, it's mostly the muons which make it... [+] down to Earth's surface, where they are detectable with the right setup. Neutrinos are also produced, some of which can pass through the Earth, but this explanation for the ANITA signal is now disfavored.

While cosmic ray showers are common from high-energy particles, it’s mostly the muons which make it… [+]ALBERTO IZQUIERDO; COURTESY OF FRANCISCO BARRADAS SOLAS

The rare events that ANITA saw were consistent with a neutrino coming up through the Earth and producing radio waves, but at energies that should be so high that passing through the Earth uninhibited should not be possible.

How many events like this did they see? Three.

Did they have to come through the Earth? No. The first two could have been normal air-shower tau neutrinos (one of the three types of neutrino allowed), while the third was probably just part of the experimental background.

In fact, there’s an extraordinary piece of evidence that disfavors them coming through the Earth: the IceCube neutrino detector exists, and if high-energy tau neutrinos are regularly passing through the Earth (and the Antarctic ice), IceCube would have definitively seen a signal. And, quite unambiguously, they have not.

When a neutrino interacts in the clear Antarctic ice, it produces secondary particles that leave a... [+] trace of blue light as they travel through the IceCube detector. The lack of high-energy tau neutrinos seen by IceCube effectively rules out the astrophysical origin of whatever created the radio waves that ANITA saw.

When a neutrino interacts in the clear Antarctic ice, it produces secondary particles that leave a… [+]NICOLLE R. FULLER/NSF/ICECUBE

Scientifically, this means that:

  • ANITA saw radio signals that it could not explain,
  • their leading hypothesis was that high-energy tau neutrinos are traveling upwards through the Earth,
  • and that hypothesis was refuted by IceCube observations,
  • teaching us there is no astrophysical point source out there that is creating the particles that ANITA is indirectly seeing.

So where, in all of this, do the parallel Universes come in?

Because there were only three explanations for what ANITA saw: either there was an astrophysical source for these particles, there’s a flaw in their detector or their interpretation of the detector data, or something very exotic, remarkable, and beyond the Standard Model (known as CPT violation) is happening. Some very good science ruled out the first option (back in January), which means it’s almost certainly the second option. The third? Well, if our Universe cannot violate CPT, maybe this comes from a parallel Universe where CPT is reversed: an explanation that’s as unlikely as it is poorly reasoned.

Every few years, a physicist rediscovers and popularizes the idea that our Big Bang made have... [+] created a counterpart Universe, dominated by antimatter, where many of our conventional rules are flipped. This idea has no evidence behind it and plenty against it, but that rarely gets discussed.

Every few years, a physicist rediscovers and popularizes the idea that our Big Bang made have… [+]E. SIEGEL, DERIVATIVE FROM ÆVAR ARNFJÖRÐ BJARMASON

Remember: in science, we must always rule out all the conventional explanations that don’t involve new physics before we resort to a game-breaking explanation. Over the past decade, a number of remarkable claims have been made that have disintegrated upon further investigation. Neutrinos don’t travel faster-than-light; we haven’t found dark matter or sterile neutrinos; cold fusion isn’t real; the impossible “reactionless engine” was a failure.

There’s a remarkable story here that’s all about good science. An experiment (ANITA) saw something unexpected, and published their results. A much better experiment (IceCube) followed it up, and ruled out their leading interpretation. It strongly suggested something is amiss with the first experiment, and more science will help us uncover what’s truly occurring. For now, based on the scientific evidence we have, parallel Universes will have to remain a science fiction dream.