Why is this weird, metallic star hurtling out of the Milky Way?

Astronomers analyzed light data from a piece of supernova shrapnel to gain clues about where it came from.

About 2,000 light-years away from Earth, there is a star catapulting toward the edge of the Milky Way. This particular star, known as LP 40?365, is one of a unique breed of fast-moving stars — remnant pieces of massive white dwarf stars — that have survived in chunks after a gigantic stellar explosion.

Listen to this article

“This star is moving so fast that it’s almost certainly leaving the galaxy…[it’s] moving almost two million miles an hour,” says JJ Hermes, Boston University College of Arts & Sciences assistant professor of astronomy. But why is this flying object speeding out of the Milky Way? Because it’s a piece of shrapnel from a past explosion — a cosmic event known as a supernova — that’s still being propelled forward.

“To have gone through partial detonation and still survive is very cool and unique, and it’s only in the last few years that we’ve started to think this kind of star could exist,” says Odelia Putterman, a former BU student who has worked in Hermes’ lab.

In a new paper published in The Astrophysical Journal Letters, Hermes and Putterman uncover new observations about this leftover “star shrapnel” that gives insight to other stars with similar catastrophic pasts.

Putterman and Hermes analyzed data from NASA’s Hubble Space Telescope and Transiting Exoplanet Survey Satellite (TESS), which surveys the sky and collects light information on stars near and far. By looking at various kinds of light data from both telescopes, the researchers and their collaborators found that LP 40?365 is not only being hurled out of the galaxy, but based on the brightness patterns in the data, is also rotating on its way out.

“The star is basically being slingshotted from the explosion, and we’re [observing] its rotation on its way out,” says Putterman, who is second author on the paper.

“We dug a little deeper to figure out why that star [was repeatedly] getting brighter and fainter, and the simplest explanation is that we’re seeing something at [its] surface rotate in and out of view every nine hours,” suggesting its rotation rate, Hermes says. All stars rotate — even our sun slowly rotates on its axis every 27 days. But for a star fragment that’s survived a supernova, nine hours is considered relatively slow.

Supernovas occur when a white dwarf gets too massive to support itself, eventually triggering a cosmic detonation of energy. Finding the rotation rate of a star like LP 40?365 after a supernova can lend clues into the original two-star system it came from. It’s common in the universe for stars to come in close pairs, including white dwarfs, which are highly dense stars that form toward the end of a star’s life. If one white dwarf gives too much mass to the other, the star being dumped on can self-destruct, resulting in a supernova. Supernovas are commonplace in the galaxy and can happen in many different ways, according to the researchers, but they are usually very hard to see. This makes it hard to know which star did the imploding and which star dumped too much mass onto its star partner.

Based on LP 40?365’s relatively slow rotation rate, Hermes and Putterman feel more confident that it is shrapnel from the star that self-destructed after being fed too much mass by its partner, when they were once orbiting each other at high speed. Because the stars were orbiting each other so quickly and closely, the explosion slingshotted both stars, and now we only see LP 40-365.

“This [paper] adds one more layer of knowledge into what role these stars played when the supernova occurred,” and what can happen after the explosion, Putterman says. “By understanding what’s happening with this particular star, we can start to understand what’s happening with many other similar stars that came from a similar situation.”

“These are very weird stars,” Hermes says. Stars like LP 40-365 are not only some of the fastest stars known to astronomers, but also the most metal-rich stars ever detected. Stars like our sun are composed of helium and hydrogen, but a star that has survived a supernova is primarily composed of metal material, because “what we’re seeing are the by-products of violent nuclear reactions that happen when a star blows itself up,” Hermes says, making star shrapnel like this especially fascinating to study.

Scientists find chunk of blown-apart star hurtling through Milky Way at breakneck speed

LP 40-365 will probably leave the galaxy at some point, scientists say.

Artist’s impression of a supernova ejecting a white dwarf star.

Artist’s impression of a supernova ejecting a white dwarf star. (Image credit: Mark Garlick / Science Photo Library via Getty Images )

A chunk of stellar shrapnel is careering toward the edge of our Milky Way galaxy at almost 2 million mph (3.2 million kph), a new study reports.

“The star is moving so fast that it’s almost certainly leaving the galaxy,” study co-lead author J.J. Hermes, an associate professor of astronomy at Boston University, said in a statement

The star, known as LP 40-365, currently lies about 2,000 light-years from Earth. And calling it a star may be a bit generous, actually; Hermes and his colleagues think it’s a hunk of a superdense stellar corpse called a white dwarf that was blown apart in a violent supernova explosion after gobbling up too much mass from a companion. 

“To have gone through partial detonation and still survive is very cool and unique, and it’s only in the last few years that we’ve started to think this kind of star could exist,” study co-author Odelia Putterman, a former Boston University student who has worked in Hermes’ lab, said in the same statement. 

The speedy star was spotted during an analysis of survey data gathered by NASA’s Hubble Space Telescope and Transiting Exoplanet Survey Satellite (TESS). The researchers noticed that LP 40-365is not only racing along but is also rotating once every nine hours as it goes. 

The rotation in itself is nothing unusual, for all stars rotate; our own sun spins on its axis every 27 Earth days. However, according to researchers, a nine-hour rotational period is considered to be relatively slow for an object that went through something as catastrophic as a supernova. 

It’s this sluggish rotation that implies LP 40-365 was once part of a two-star system with an unhealthy feeding habit. 

According to the researchers, stars commonly orbit each other in close pairs, including highly dense white dwarfs. In such binary systems, if one white dwarf transfers too much mass to the other, the result can be a supernova — the largest explosion that takes place in space, according to NASA.

It’s usually hard to determine which star was the “donor” and which was the “eater.” But because LP 40-365’s rotation is relatively slow, the research team feels confident that the object is cosmic shrapnel from the exploded star. As the two stars orbited each other at high speeds and in close proximity, the resulting supernova likely catapulted both stars out at breakneck speed, but we’ve only been able to spot LP 40-365, according to the statement.

“This [paper] adds one more layer of knowledge into what role these stars played when the supernova occurred,” and what can happen after the explosion, Putterman said. “By understanding what’s happening with this particular star, we can start to understand what’s happening with many other similar stars that came from a similar situation.”

These supernova survivors are even more intriguing as they are metal-rich, unlike our sun, which is primarily composed of hydrogen and helium. (Astronomers consider any element heavier than hydrogen and helium a metal.)

“These are very weird stars,” Hermes said. “What we’re seeing are the byproducts of violent nuclear reactions that happen when a star blows itself up.” Strange stars like LP 40-365 are therefore fascinating targets to study, the researchers said.