How to detect “stealth” solar storms before they destroy our planet!

While we can see many solar storms coming, some are “stealthy.” A new study shows how to detect them.

Listen to this article

#space #spaceweather #solarstorms #CME #stealth #detect #astonomy

  • “Stealth” solar storms are difficult to detect before they are near Earth.
  • The use of various imaging techniques from multiple angles allowed researchers to detect these stealth storms earlier than ever.
  • Not seeing one coming could have disastrous effects on our electronic infrastructure.

Solar storms are a collection of disturbances on the sun that influence space weather. They include things like solar flares and coronal mass ejections (CMEs), a large release of plasma in the solar wind. They can affect Earth in a number of ways, such as by increasing the number of particles that hit the Earth’s magnetic field causing an aurora or — in severe cases — by disrupting technology and radio transmissions.

Most of the time, scientists can see storms as they occur on the sun. Information about the impact on Earth can be gathered a few days before it is likely to reach us. However, in as many as 20 percent of CMEs, there is little to no noticeable activity on the sun to give us an early warning. These “stealth” CMEs can have a huge impact on space weather but have proven difficult to spot until they have nearly arrived.

Luckily, a new study published in Frontiers in Astronomy and Space Sciences reports on new ways to detect so-called stealth solar storms long before they hit Earth.

The benefits of looking at the sun

Unlike regular CMEs, stealth CMEs do not tend to give typical warning signs like clear dimming or brightening of the surface of the sun. Instead, they seem to form in a higher region of the sun’s atmosphere called the corona than is typical. Unfortunately, watching for changes in the corona does not always give scientists the information they need to predict where a mass of plasma is moving.

In this study, the researchers took advantage of knowing the approximate origins of four stealth CMEs that were determined by data collected from Earth and the STEREO satellite, which was at a different angle with respect to the sun. The four CMEs differed in angle and intensity and occurred at different points in the solar cycle.

By using different imaging processes, subtle shifts in the upper corona were identified in each of the four cases examined. Most of the events also originated near areas with particularly strong magnetic fields.

The authors suggest that the small brightening and dimming effects they observed could be used to detect these CMEs in the future using similar methods. While they admit that the study does not provide a way to detect these CMEs before they form, they conclude that “identifying the source region of a stealth CME represents a first step toward providing more reliable predictions.”

A bad day for Earth

Solar storms are not merely of academic interest. Large storms have occurred before, and the damage they can cause is potentially devastating. A strong solar storm in 1989 caused blackouts in Quebec and disrupted broadcasts of Radio Free EuropeThat storm has nothing on the “Carrington Event” of 1859, however.

That solar storm was incredibly powerful, producing auroras visible in places like Queensland, Australia and the Caribbean. The auroras over New England were so bright that the residents could read newspapers by their light. Telegraph systems fried as a result of the huge amount of electromagnetic energy added to the Earth’s magnetosphere, occasionally starting fires as they spontaneously sparked. Some telegraph operators reported being able to operate their machines without connecting them to wires.

A storm estimated to be just as powerful as the Carrington Event occurred in 2012, but the plasma it ejected narrowly missed Earth. According to a study by the National Academy of Sciences, the total cost of such an event to the United States today could be more than two trillion dollars. It would also cause damage that could take years to fully repair. It goes without saying that having large portions of our electric systems and technology fried with little time to prepare might also make things unpleasant for a lot of people.

Smaller storms hit Earth once every three years, often causing damage to systems that use electricity. Larger events are rarer, but not as rare as we would hope. A study from a few years ago calculated that the odds of a Carrington level event occurring is 12 percent per decade.

May the odds be in our favor

With odds and consequences like that, the ability to see a “stealth” solar storm coming might prove to be one of the most important tools humanity ever discovered.

Given enough warning, precautions can be taken to help minimize the damage to electronics from a large solar storm. For example, satellites can be moved out of harm’s way, power grids can be primed to avoid being overloaded, and transformers can be taken offline to keep them from being destroyed.

If we fail to see the next Carrington Event coming, it might be a while before you can read the article we’ll write about it.

First Images of Strange Natural Features on Mars!

Weird objects seen on Mars, explained

From a “butt crack rock” to a cannonball, entertaining images from Mars amuse scientists and excite conspiracy theorists and alien fans.

#Mars #Space #Solarsystem #Weird #Astronomy

Listen to this article

Face on Mars is a classic

Humans love a good space story. That’s why it’s so much fun to speculate about unusual objects seen in images of Mars. Our imaginations turn rock formations into fish and cosmic rays into alien communications. A recent image from the NASA Perseverance rover generated plenty of jokes about what looks like a rear end. Is it an alien keister? Nope. It’s just a goofy rock formation.

Join us as we explore some famous Mars mysteries and the scientific explanations behind them.

NASA’s Viking 1 Orbiter zipped near Mars in 1976 and took this now iconic image of the surface. What got everyone excited is the face-like formation in the upper center of the picture. If you have a creative mind, it’s easy to see it as having two eyes, a nose, a mouth and a weird hairdo. It even looks a bit like a young Elvis Presley. You can see why some people thought the face was an alien-built monument on Mars.


2 of 57NASA

A newer look at the Mars face

NASA wasn’t going to let the face on Mars go without an explanation. The Mars Global Surveyor cleared things up for good in 2001 by taking a fresh image of the face. The newer, sharper, higher-resolution picture shows a much blobbier, less stark formation. In short, it’s just a mesa and not an alien-carved religious site.READ MORE


3 of 57NASA/JPL-Caltech/ASU

Perseverance rover ‘Butt crack rock’

NASA’s Perseverance rover arrived on the red planet in February 2021 and has since snapped a bounty of images of the landscape in the Jezero Crater. This fantastically funny-looking rock caught the eye of space fans who laughed about its resemblance to a rear end. It earned the nickname “butt crack rock.”READ MORE


4 of 57ESA/DLR/FU Berlin

Mars south pole ‘angel’ and ‘heart’

Apply a little imagination to this European Space Agency Mars Express view of the red planet’s south pole and you’ll see an angel and a heart together. ESA described it as an “angelic figure” in a December 2020 image release. 

It’s simply a bit of geology on display from the icy polar region where an impact crater forms the “head” and halo, and a sublimation pit (a spot where the ice turned to vapor) formed the “hand” on the left.READ MORE


5 of 57NASA/JPL-Caltech/MSSS

Mother of pearl clouds

Yes, these shimmering, colorful clouds appeared on Mars. NASA’s Curiosity rover doesn’t just eye the local geology; it also documents what’s happening in the sky. This view of iridescent “mother of pearl” clouds comes from March 5, 2021.

“If you see a cloud with a shimmery pastel set of colors in it, that’s because the cloud particles are all nearly identical in size,” said atmospheric scientist Mark Lemmon with the Space Science Institute in Colorado. “That’s usually happening just after the clouds have formed and have all grown at the same rate.”  READ MORE


6 of 57NASA/JPL-Caltech/LANL/Red circle by Amanda Kooser/CNET

Not a drill bit

This is not a Phillips-head drill bit on Mars, but it’s fun to pretend. Citizen scientist Kevin Gill spotted this odd, small rock in a Curiosity rover image from late 2020 and cracked a joke about it looking like a drill bit. READ MORE


7 of 57NASA/JPL-Caltech/Kevin Gill

“Brachiosaurus” rock

Software engineer and citizen scientists Kevin Gill has a knack for finding funny Mars rocks in rover images. He spotted this brachiosaurus-shaped rock as snapped by the Perseverance rover on Mars in April 2021. Unfortunately, we’ve seen no evidence of real dinosaurs on Mars, and we’re still looking for signs of ancient microbial life. READ MORE


8 of 57NASA/JPL/University of Arizona

Mr. Peanut?

The HiRise camera team for NASA’s Mars Reconnaissance Orbiter spacecraft spotted a Planters Mr. Peanut mascot lookalike in this collection of pits on Mars. “The south polar residual cap is constantly changing as carbon dioxide sublimates from steep slopes, enlarging pits, and condenses on flat areas, filling pits,” wrote planetary geologist Alfred McEwen in a HiRise statement in May 2021.

I think this looks like Mr. Peanut spawning Baby Nut, which is even weirder than if it was just Mr. Peanut alone.READ MORE


9 of 57NASA/JPL-Caltech/MSSS/Red circle by Amanda Kooser/CNET

Robot leg or rock? It’s a rock

Not a boot. Not a bot. This tiny rock on Mars captured attention in early 2019 thanks to its resemblance to a boot or a robot leg. It’s neither of those things, but it is a fun shape. The images comes from NASA’s Curiosity rover.READ MORE


10 of 57NASA/JPL/UArizona

HiRise dust devil tracks

NASA’s Mars Reconnaissance Orbiter caught sight of some wild dust devils tracks on Mars in late 2018. They look like claw marks, and they pop out thanks to the image processing done on this view from the spacecraft’s HiRise camera. Mars is a very windy place and dust devils are common.READ MORE


11 of 57NASA/JPL-Caltech

Belly pan

If this looks like it was made by humans, it’s because it was. NASA’s Perseverance rover landed on Mars in February 2021 and it left some debris behind on the ground when it dropped an ejectable belly pan on purpose. The pan acted as a protective cover for the rover’s sampling system, which will allow it to collect and cache rock samples for a later mission to come pick up. After landing, the cover was no longer needed.READ MORE


12 of 57NASA/JPL-Caltech/ASU

Perseverance sees a rock

NASA’s Perseverance rover snapped a view of this odd rock on March 2021. If you look closely just to the right of center, you can see a series of tiny marks where the rover’s laser zapped it. This was the first celebrity rock of the rover’s expedition as scientists and space fans questioned if was a weathered piece of bedrock, a chunk or Mars thrown from somewhere else by an impact event, or possibly a meteorite.READ MORE


13 of 57NASA/JPL/UArizona

Happy Face Crater

NASA’s Mars Reconnaissance Orbiter viewed the “Happy Face Crater” on Mars in both 2011 and 2020 and found some changes in its complexion. You can see how it got its nickname. The crater is located in the south pole region and the difference in darkness of the features is due to the changing frost cover on the ground.READ MORE


14 of 57NASA/JPL-Caltech/Red circle by Amanda Kooser/CNET

Dark, shiny boulder

NASA’s Curiosity rover snapped this view of a dark, shiny boulder on Mars on Dec. 6, 2020. The overall view is lovely, but the boulder was a bit of a mystery for how it stood out against the surrounding landscape. It’s possible the boulder could be a meteorite or was perhaps deposited there from elsewhere on Mars.READ MORE


15 of 57NASA/JPL/MSSS/The Murray Lab

Possible volcanic eruption site

Mars has a volcanic past, but there have been questions about whether it’s been volcanically active more recently in its history. A research team suggested a “mysterious dark deposit” seen here could be evidence of an explosive volcanic deposit from within the last 50,000 years. For size, the deposit covers an area slightly larger than Washington DC.READ MORE


16 of 57NASA/JPL-Caltech/MSSS

Pancake-shaped rock

This is exactly what my misshapen pancakes look like on Sunday mornings. NASA’s Curiosity rover snapped this shiny, flattish rock in November 2020, leading space fans to compare it with various food items, including pancakes and melted chocolate ice cream. The rock may have been polished to a sheen thanks to wind and sand action.READ MORE

Bone-shaped rock on Mars

17 of 57NASA/JPL-Caltech/MSSS

Oh look, a thigh bone on Mars

Mark one up for the funny-bone file. NASA’s Curiosity rover sent a photo back to Earth in 2014 that showed a very odd rock shaped a bit like a femur bone from a human thigh. Scientists obligingly explained that the unusual shape was most likely the product of erosion by wind or water. If NASA ever did amazingly find human remains on Mars, scientists would want to shout it from the rooftops.READ MORE

Mars dunes

18 of 57NASA/JPL/University of Arizona

Morse code?

This view from NASA’s Mars Reconnaissance Orbiter, snapped in February 2016, shows some strange formations on the surface of the red planet. The dark, raised areas are a series of dunes that look a lot like the dots and dashes of Morse code.

Unfortunately, the code spells out gibberish. Planetary scientist Veronica Bray analyzed the dune image and told Gizmodo the code works out to read “NEE NED ZB 6TNN DEIBEDH SIEFI EBEEE SSIEI ESEE SEEE !!”

New AI improves itself through Darwinian-style evolution

AutoML-Zero is a proof-of-concept project that suggests the future of machine learning may be machine-created algorithms.

#AI #Machinelearning #evolution #computing #algorithms

New AI improves itself through Darwinian-style evolution


Listen to this article
  • Automatic machine learning is a fast-developing branch of deep learning.
  • It seeks to vastly reduce the amount of human input and energy needed to apply machine learning to real-world problems.
  • AutoML-Zero, developed by scientists at Google, serves as a simple proof-of-concept that shows how this kind of technology might someday be scaled up and applied to more complex problems.

Machine learning has fundamentally changed how we engage with technology. Today, it’s able to curate social media feeds, recognize complex images, drive cars down the interstate, and even diagnose medical conditions, to name a few tasks.

But while machine learning technology can do some things automatically, it still requires a lot of input from human engineers to set it up, and point it in the right direction. Inevitably, that means human biases and limitations are baked into the technology.

So, what if scientists could minimize their influence on the process by creating a system that generates its own machine-learning algorithms? Could it discover new solutions that humans never considered?

To answer these questions, a team of computer scientists at Google developed a project called AutoML-Zero, which is described in a preprint paper published on arXiv.

“Human-designed components bias the search results in favor of human-designed algorithms, possibly reducing the innovation potential of AutoML,” the paper states. “Innovation is also limited by having fewer options: you cannot discover what you cannot search for.”

Automatic machine learning (AutoML) is a fast-growing area of deep learning. In simple terms, AutoML seeks to automate the end-to-end process of applying machine learning to real-world problems. Unlike other machine-learning techniques, AutoML requires relatively little human effort, which means companies might soon be able to utilize it without having to hire a team of data scientists.

AutoML-Zero is unique because it uses simple mathematical concepts to generate algorithms “from scratch,” as the paper states. Then, it selects the best ones, and mutates them through a process that’s similar to Darwinian evolution.

AutoML-Zero first randomly generates 100 candidate algorithms, each of which then performs a task, like recognizing an image. The performance of these algorithms is compared to hand-designed algorithms. AutoML-Zero then selects the top-performing algorithm to be the “parent.”

“This parent is then copied and mutated to produce a child algorithm that is added to the population, while the oldest algorithm in the population is removed,” the paper states.

The system can create thousands of populations at once, which are mutated through random procedures. Over enough cycles, these self-generated algorithms get better at performing tasks.

“The nice thing about this kind of AI is that it can be left to its own devices without any pre-defined parameters, and is able to plug away 24/7 working on developing new algorithms,” Ray Walsh, a computer expert and digital researcher at ProPrivacy, told Newsweek.

If computer scientists can scale up this kind of automated machine-learning to complete more complex tasks, it could usher in a new era of machine learning where systems are designed by machines instead of humans. This would likely make it much cheaper to reap the benefits of deep learning, while also leading to novel solutions to real-world problems.

Still, the recent paper was a small-scale proof of concept, and the researchers note that much more research is needed.

“Starting from empty component functions and using only basic mathematical operations, we evolved linear regressors, neural networks, gradient descent… multiplicative interactions. These results are promising, but there is still much work to be done,” the scientists’ preprint paper noted.

Proof that Objective reality doesn’t exist

A quantum experiment suggests there’s no such thing as objective reality

#Reality #quantum #experiment #science #physics

Listen to this article

Physicists have long suspected that quantum mechanics allows two observers to experience different, conflicting realities. Now they’ve performed the first experiment that proves 


Back in 1961, the Nobel Prize–winning physicist Eugene Wigner outlined a thought experiment that demonstrated one of the lesser-known paradoxes of quantum mechanics. The experiment shows how the strange nature of the universe allows two observers—say, Wigner and Wigner’s friend—to experience different realities.

Since then, physicists have used the “Wigner’s Friend” thought experiment to explore the nature of measurement and to argue over whether objective facts can exist. That’s important because scientists carry out experiments to establish objective facts. But if they experience different realities, the argument goes, how can they agree on what these facts might be?

That’s provided some entertaining fodder for after-dinner conversation, but Wigner’s thought experiment has never been more than that—just a thought experiment.  

Last year, however, physicists noticed that recent advances in quantum technologies have made it possible to reproduce the Wigner’s Friend test in a real experiment. In other words, it ought to be possible to create different realities and compare them in the lab to find out whether they can be reconciled.

And today, Massimiliano Proietti at Heriot-Watt University in Edinburgh and a few colleagues say they have performed this experiment for the first time: they have created different realities and compared them. Their conclusion is that Wigner was correct—these realities can be made irreconcilable so that it is impossible to agree on objective facts about an experiment.

Wigner’s original thought experiment is straightforward in principle. It begins with a single polarized photon that, when measured, can have either a horizontal polarization or a vertical polarization. But before the measurement, according to the laws of quantum mechanics, the photon exists in both polarization states at the same time—a so-called superposition.

Wigner imagined a friend in a different lab measuring the state of this photon and storing the result, while Wigner observed from afar. Wigner has no information about his friend’s measurement and so is forced to assume that the photon and the measurement of it are in a superposition of all possible outcomes of the experiment.

Wigner can even perform an experiment to determine whether this superposition exists or not. This is a kind of interference experiment showing that the photon and the measurement are indeed in a superposition.

From Wigner’s point of view, this is a “fact”—the superposition exists. And this fact suggests that a measurement cannot have taken place. 

But this is in stark contrast to the point of view of the friend, who has indeed measured the photon’s polarization and recorded it. The friend can even call Wigner and say the measurement has been done (provided the outcome is not revealed).

So the two realities are at odds with each other. “This calls into question the objective status of the facts established by the two observers,” say Proietti and co.

That’s the theory, but last year Caslav Brukner, at the University of Vienna in Austria, came up with a way to re-create the Wigner’s Friend experiment in the lab by means of techniques involving the entanglement of many particles at the same time.

The breakthrough that Proietti and co have made is to carry this out. “In a state-of-the-art 6-photon experiment, we realize this extended Wigner’s friend scenario,” they say.

They use these six entangled photons to create two alternate realities—one representing Wigner and one representing Wigner’s friend. Wigner’s friend measures the polarization of a photon and stores the result. Wigner then performs an interference measurement to determine if the measurement and the photon are in a superposition.

The experiment produces an unambiguous result. It turns out that both realities can coexist even though they produce irreconcilable outcomes, just as Wigner predicted.  

That raises some fascinating questions that are forcing physicists to reconsider the nature of reality.

The idea that observers can ultimately reconcile their measurements of some kind of fundamental reality is based on several assumptions. The first is that universal facts actually exist and that observers can agree on them.

But there are other assumptions too. One is that observers have the freedom to make whatever observations they want. And another is that the choices one observer makes do not influence the choices other observers make—an assumption that physicists call locality.

If there is an objective reality that everyone can agree on, then these assumptions all hold.

But Proietti and co’s result suggests that objective reality does not exist. In other words, the experiment suggests that one or more of the assumptions—the idea that there is a reality we can agree on, the idea that we have freedom of choice, or the idea of locality—must be wrong.

Of course, there is another way out for those hanging on to the conventional view of reality. This is that there is some other loophole that the experimenters have overlooked. Indeed, physicists have tried to close loopholes in similar experiments for years, although they concede that it may never be possible to close them all.

Nevertheless, the work has important implications for the work of scientists. “The scientific method relies on facts, established through repeated measurements and agreed upon universally, independently of who observed them,” say Proietti and co. And yet in the same paper, they undermine this idea, perhaps fatally.

The next step is to go further: to construct experiments creating increasingly bizarre alternate realities that cannot be reconciled. Where this will take us is anybody’s guess. But Wigner, and his friend, would surely not be surprised.

Ref: : Experimental Rejection of Observer-Independence in the Quantum World

Solar wind enveloped Earth, claims NOAA. Here’s what has happened so far

Solar wind enveloped Earth, claims NOAA. Here’s what has happened so far… The National Oceanic and Atmospheric Administration has classified the solar storm as G-1 or ‘minor’. 

Listen to this article
  • The American agency confirmed that the phenomenon lasted for a few hours and slightly unsettled the Earth’s magnetic field

#space #solarflare #solarwind #spaceweather #solar #storm

As per the National Oceanic and Atmospheric Administration (NOAA), a dense stream of solar wind enveloped the Earth late on 14 July, but no notable impact was observed as the phenomenon wasn’t particularly powerful on the space weather scale.

The American agency confirmed that the phenomenon lasted for a few hours and slightly unsettled the Earth’s magnetic field.

The solar storm passed through the planet at 16:41 UTC (22:11 IST) with a geomagnetic K-index of 4. The K-index is used to characterise the magnitude of geomagnetic storms, and a level of 4 indicates minor disturbance, as per the NOAA alert.

The US agency stated that weak power grid fluctuations happened due to the solar storm, and expected auroras to be visible at high latitudes such as Canada and Alaska. However, the local US media has not reported any such sightings.

All about the solar storm

The massive solar storm, which moved towards the Earth at a speed of 1.6 million kilometres per hour, was supposed to hit the Earth last week, following which a power failure around the globe was expected, according to

“THE SOLAR WIND IS COMING: Later today, a high-speed stream of solar wind is expected to hit Earth’s magnetic field. Flowing from an equatorial hole in the sun’s atmosphere, wind speeds could top 500 km/s. Full-fledged geomagnetic storms are unlikely, but lesser geomagnetic unrest could spark high latitude auroras,” the said.

The National Oceanic and Atmospheric Administration has reportedly classified the solar storm as G-1 or ‘minor’.

What are geomagnetic storms?

A major disturbance of Earth’s magnetosphere, which occurs when there is a very efficient exchange of energy from the solar wind into the space environment surrounding Earth, is known as a geomagnetic storm. The storm is the result of major changes in the currents, plasmas produced by solar winds, as per the NOAA.

The most powerful geomagnetic storm ever recorded resulted in the 1859 Carrington Event, when telegraph lines electrified, zapping operators and setting offices ablaze in North America and Europe.

To create a geomagnetic storm, a solar wind has to sustain high speeds for a long period of time, which transfers the energy of the wind into Earth’s magnetic field.

The fierce and largest storms that result from these situations are associated with solar Coronal Mass Ejections (CMEs) where billions of tons of plasma from the Sun are hurtled towards planets that also reach Earth. While coronal mass ejections take days to arrive at Earth, some have been observed to arrive within 15-18 hours of being ejected from the Sun.

SpaceX’s INSANE New Starship LEAKED by Elon Musk

#Space #spacex #starship #starship2.0 #moon #mars #Leak #Elonmusk

Listen to this story

Deep in the heart of South Texas, Elon Musk’s SpaceX is hard at work creating the next generation of space travel. Called Starship, their top-of-the-line, one-of-a-kind spaceship is unlike any other that has come before it. It will be 30 feet in diameter, 180 feet tall and powered by the trademarked Super Heavy launch vehicle, which will propel Starship into space with the assistance of 31 Raptor engines. With the Starship and the Super Heavy combined, the craft will be the tallest, heaviest and most powerful space rocket that has ever graced the stars.

But the creation is more than just a record-breaker. Perhaps the most amazing thing about Starship will be the fact that it’s totally reusable unlike the spaceships of yesteryear created by NASA. The ability to reuse this ship is really what sets it apart and will make it much more financially enticing for SpaceX and any other space agencies.

To call Starship a modern marvel of engineering would be an understatement. It really does set the bar high for the future of flying through space. Generations of spaceships and prototypes have all led up to this creation.

And yet, Elon Musk isn’t satisfied with Starship. Even though his company is producing something revolutionary and ahead-of-its-time, Musk is already looking ahead to the next iteration of Starship. In fact, he has recently hinted at the concept of an even bigger Starship model, as well as special variants of the ship that would be capable of point-to-point travel on Earth, cargo shipments, and trips to the moon and Mars.

Why God is still the best scientific theory to explain our life on Earth

Physicists are increasingly coming to the conclusion our universe was intelligently designed…

#space #intelligentdesign #universe #unexplained #god

Earth from space with stars
Listen to this article

Can aliens explain both the origin of life and the fine tuning?

Aliens are in the news again. In June, a Navy report could not rule out the possibility that “unexplained aerial phenomena” spotted in our atmosphere were visitors from outer space. In January, Harvard astronomer Avi Loeb claimed an alien spacecraft had actually swept through our solar system in 2017 — and more are coming. Loeb later doubled down, suggesting that UFOs spotted by the military could be spies sent to gather intelligence about our life on Earth. 

As crazy as it all sounds, scientists have long posited the possibility of aliens on our planet. In fact, Francis Crick (who along with James Watson won the Nobel Prize for discovering the structure of the DNA molecule) once theorized that life on Earth was “deliberately transmitted” by intelligent extra terrestrials. Far from being scorned, Crick’s “Directed panspermia” theory was presented at a conference organized by Carl Sagan in 1971 and later published as a scientific paper. 

Scientists took this idea seriously because even the simplest living cells aren’t simple at all. 

Watson and Crick discovered that chemical subunits in DNA function like letters in a written language or digital symbols in computer code. As Bill Gates explains, “DNA is like a computer program, but far, far more advanced than any software we’ve ever created.” 

Evolutionary biologist Richard Dawkins echoes this assessment, noting the “machine code of the genes is uncannily computer-like.” In a recent tweet, he confessed to being knocked “sideways with wonder at the miniaturized intricacy of the data-processing machinery in the living cell.” 

The presence of information in even the simplest living cells suggests that intelligent design played a role in life’s origin. After all, we know computer programs come from programmers and information generally — in a book or newspaper, for example — always arises from an intelligent source. 

Perhaps for this reason, Dawkins once acknowledged the cell might contain a “signature of intelligence” — and attributed the source of that intelligence to alien intervention. As he mused, “it could be that somewhere in the universe, a civilization evolved . . . [a] high level of technology and designed a form of life that they seeded onto this planet.” 

But invoking an alien intelligence as the source of life on Earth does nothing to explain how life, and the information needed to produce it, first arose elsewhere. “Panspermia” just kicks that ultimate question out into space. 

In addition, no alien being within the universe can explain what scientists have discovered about the structure of the universe

Since the 1960s, physicists have learned that we live in a “Goldilocks universe” where the fundamental parameters of physics have been finely tuned, against all odds, to make life possible. Even slight alterations in the values of key factors — such as the strength of gravity or electromagnetism or the masses of elementary particles — would render life impossible. 

Consequently, many scientists think this fine tuning points to a cosmic fine-tuner or “super-intellect” as Cambridge astrophysicist Sir Fred Hoyle famously put it. Moreover, the fine-tuning parameters were set at, or soon after, the beginning of the universe, long before any alien intelligence could have evolved or acted to determine them. 

Can aliens explain both the origin of life and the fine tuning? Probably not. Explaining both these mysteries requires an intelligence who can act within the universe (to produce the code necessary to life) and also act on the universe as a whole from the beginning (to establish its finely-tuned structure). 

Believers in this kind of intelligence greatly outnumber believers in alien astronauts. They have long called this intelligence behind life and the universe by a different name. 

They call it God. 

A Major X Class Solar Flare Just Slammed Into Earth

#Xflares #SolarFlares #space #spaceweather #sun #solar

Listen to this article

A Major X Class Solar Flare Just Slammed Into Earth

NASA’s Solar Dynamics Observatory captured the flare on July 3. NASA/SDO

The strongest solar flare seen in four years erupted from the surface of the sun early Saturday and smacked into our planet’s atmosphere eight minutes later.

An explosion from a new and unnamed sunspot produced the X-class flare, the first of solar cycle 25.

The blast of x-rays traveled toward earth at the speed of light, colliding with the top of our atmosphere and causing a shortwave radio blackout over the Atlantic ocean and coastal regions. The below blackout map shows where radio operators may have noticed the weirdness around 10:30 a.m. ET

The map shows where the blast of x-rays from the solar flare impacted the atmosphere the strongest. NOAA/SWPC

Astronomer and space weather watcher Dr. Tony Phillips says the sunspot that produced the X1.59 flare appeared suddenly, like a cloudless day that quickly turns stormy.

“Yesterday it did not even exist, highlighting the unpredictability of solar activity,” Phillips writes at “More flares may be in the offing, so stay tuned.”

There appears to be little risk of an accompanying coronal mass ejection (CME) with this flare. A CME is a burst of hot, charged plasma that often occurs alongside a flare. The particles from a CME can take a few days to reach earth and cause additional interference with radio and electrical systems when they arrive.

Fortunately, the sunspot that produced this flare was on the edge of the sun’s face, making it unlikely that a CME would be directed towards Earth.

Solar flares are classified by their X-ray brightness as A, B, C, M or X with A being the smallest and X being the brightest and largest. This was the first X flare tossed off by the sun since a new solar cycle began in December 2019.

The sun undergoes an approximately 11-year-long activity cycle in which it swells to a peak at the middle of the cycle and then begins to quiet down until the end of the cycle when it all repeats.

While this is the first major flare of the young solar cycle, it measured just a X1.59, when the last solar cycle gave us a far more powerful X9 flare in 2017. All this means it’s worth heeding Phillips’ warning that stronger flares are likely on the way in the coming months.

In the past strong flares and CMEs have produced widespread power outages and communications blackouts. There is some concern that we are overdue for a catastrophic solar storm which could do unprecedented damage to power grids on the ground and the record number of satellites now in orbit, potentially crippling systems on the ground that rely on satellite communications.

Solar Flares: What Does It Take to Be X-Class?

Solar flares are giant explosions on the sun that send energy, light and high speed particles into space. These flares are often associated with solar magnetic storms known as coronal mass ejections (CMEs). The number of solar flares increases approximately every 11 years, and the sun is currently moving towards another solar maximum, likely in 2013. That means more flares will be coming, some small and some big enough to send their radiation all the way to Earth.

The biggest flares are known as “X-class flares” based on a classification system that divides solar flares according to their strength. The smallest ones are A-class (near background levels), followed by B, C, M and X. Similar to the Richter scale for earthquakes, each letter represents a 10-fold increase in energy output. So an X is ten times an M and 100 times a C. Within each letter class there is a finer scale from 1 to 9.

SOHO captured this image of an X28 class solar flare erupting on Tuesday, October 28, 2003.

The Solar and Heliospheric Observatory (SOHO) spacecraft captured this image of a solar flare as it erupted from the sun early on Tuesday, October 28, 2003.Image Credit: ESA & NASA/SOHO› View larger

The Halloween solar storms of 2003 resulted in this red aurora visible in Mt. Airy, Maryland.

The Halloween solar storms of 2003 resulted in this aurora visible in Mt. Airy, Maryland.Image Credit: NASA/George Varros› View larger

C-class and smaller flares are too weak to noticeably affect Earth. M-class flares can cause brief radio blackouts at the poles and minor radiation storms that might endanger astronauts.

And then come the X-class flares. Although X is the last letter, there are flares more than 10 times the power of an X1, so X-class flares can go higher than 9. The most powerful flare measured with modern methods was in 2003, during the last solar maximum, and it was so powerful that it overloaded the sensors measuring it. The sensors cut out at X28.

The biggest X-class flares are by far the largest explosions in the solar system and are awesome to watch. Loops tens of times the size of Earth leap up off the sun’s surface when the sun’s magnetic fields cross over each other and reconnect. In the biggest events, this reconnection process can produce as much energy as a billion hydrogen bombs.

If they’re directed at Earth, such flares and associated CMEs can create long lasting radiation storms that can harm satellites, communications systems, and even ground-based technologies and power grids. X-class flares on December 5 and December 6, 2006, for example, triggered a CME that interfered with GPS signals being sent to ground-based receivers.

NASA and NOAA – as well as the US Air Force Weather Agency (AFWA) and others — keep a constant watch on the sun to monitor for X-class flares and their associated magnetic storms. With advance warning many satellites and spacecraft can be protected from the worst effects.

Methane Detected at Saturn’s Moon May Be of Biological Origin

Here we go again: biology or unknown abiotic process?

#Enceladus #Space #Extraterrestrial #Solarsystem #Saturn

An artist’s rendering of gaseous plumes emanating from the southern pole of Enceladus. (NASA/JPL-Caltech)
Listen to this article

An international scientific team led by Antonin Affholder from the University of Paris in France wanted to know whether the gases emanating from Saturn’s moon Enceladus are likely of chemical or biological origin. During close fly-bys of the moon ending in 2015, the Cassini spacecraft detected hydrogen and methane, among other gases, which implied the presence of hydrothermal activity in the liquid water ocean beneath Enceladus’s icy surface. Could these be analogous to hydrothermal vents like the “black smokers” on Earth, which are a haven for biology? Microbes living at these vents produce methane (and water) from hydrogen and carbon dioxide gas as part of their natural metabolic reactions.

The science team used a method known as Bayesian statistics, where probability is expressed as a degree of belief based on prior obtained data and insights. They took mathematical models of known geophysical, geochemical, and biological processes, and included them in their statistical approach to quantify the plausibility of different hypotheses about Enceladus.

Methane can be an indicator of biology, but it can also form through an abiotic reaction that most commonly occurs in Earth’s oceanic crust, called serpentinization, which produces methane when water reacts with certain rock types.

Affholder’s results showed that the methane concentrations measured in Enceladus’s gaseous plume are too high to be solely due to serpentinization. In fact, they concluded that the likeliest explanation is biology. Otherwise, to explain the high methane levels, an unknown abiotic process would have to be invoked.

This reminds me of the controversy over phosphine at Venus, which also was presented as being explainable only by biology or an unknown chemical process. While the detection of methane and hydrogen in the Enceladus plume is undebatable (contrary to the phosphine detection at Venus), this study is still inconclusive, since we aren’t certain whether life is even possible inside Enceladus.

The moon’s ice-covered ocean may well be habitable now (I actually expect that), but if life requires Darwin’s “little pond” on a solid planetary surface to arise in the first place, it would not have developed on Enceladus. In general, environmental constraints for the origin of life are likely much more restrictive then for its presence. In other words, there may be many uninhabited habitable places in the galaxy.

As long as we haven’t resolved this central question, I’m not certain whether statistical analyses like Affholder’s will really move us forward. But the question of life beneath the icy surface of Enceladus needs to be investigated. Any anomaly that we can’t readily explain needs to be looked at more closely. We might even have a stroke of luck. Let’s say the authors are correct about methanogenesis. If a follow-up mission to Saturn detects biology on Enceladus, it would tell us that hydrothermal vents are one place that life can originate.

A Possible Link between ‘Oumuamua and Unidentified Aerial Phenomena

Is there a connection between ‘Oumuamua and Unidentified Aerial Phenomena?

#space #oumuamua #UAP #UFO #extraterrestrial

If some UAP turn out to be extraterrestrial technology, they could be dropping sensors for a subsequent craft to tune into. What if ‘Oumuamua is such a craft?

Listen to this article
A Possible Link between 'Oumuamua and Unidentified Aerial Phenomena
Artist’s impression of the interstellar object ‘Oumuamua. Credit: Getty Images

A colleague of mine once noted that every morning there is a long line of customers stretching out from a famous Parisian bakery into the street. “I wish someone would wait for my scientific papers with as much anticipation as Parisians eagerly stand by for their baguettes,” he said.

There is one exception to this wish, however. It involves fresh scientific evidence that we are not be the only intelligent species in the cosmos.

Recently, there have been two sources for such evidence.

First, the interstellar object discovered in 2017, ‘Oumuamua, was inferred to have a flat shape and seemed to be pushed away from the sun as if it were a lightsail. This “pancake” was tumbling once every eight hours and originated from the rare state of the local standard of rest—which averages over the motions of all the stars in the vicinity of the sun.

Second, the Pentagon is about to deliver a report to Congress stating that some unidentified aerial phenomena (UAP) are real but that their nature is unknown. If UAP originated from China or Russia and were a national security risk, their existence would have never been revealed to the public. Hence, it is reasonable to conclude that the U.S. government believes that some of these objects are not human in origin. This leaves two possibilities: either UAP are natural terrestrial phenomena or they are extraterrestrial in origin. Both possibilities imply something new and interesting that we did not know before. The study of UAP should therefore shift from occupying the talking points of national security administrators and politicians to the arena of science where it is studied by scientists rather than government officials.

Many or even most UAP might be natural phenomena. But even if one of them is extraterrestrial, might there be any possible link to ‘Oumuamua?

The inferred abundance of ‘Oumuamua-like objects is unreasonably large if they’re of purely natural origin. With Amaya Moro-Martín and Ed Turner, I wrote a paper in 2009 calculating the number of interstellar rocks based on what is known about the solar system and assuming that these rocks were ejected from similar planetary systems orbiting other stars. The population of objects required to explain the discovery of ‘Oumuamua exceeds the expected number of interstellar rocks per unit volume by orders of magnitude. In fact, there should be a quadrillion ‘Oumuamua-like objects within the solar system at any given time, if they are distributed on random trajectories with equal probability of moving in all directions.

But the number is reasonable if ‘Oumuamua was an artificial object on a targeted mission towards the sun, aimed to collect data from the habitable region near Earth. One might even wonder whether ‘Oumuamua might have been retrieving data from probes that were already sprinkled on Earth at an earlier time. In such a case, ‘Oumuamua’s thin, flat shape could have been that of a receiver. Hence, ‘Oumuamua was pushed by sunlight not for the purpose of propulsion but as a byproduct of its thin flat shape. A similar push by reflection of sunlight without a cometary tail were the traits of an artificial rocket booster that was identified in 2020 by the same Pan-STARRS telescope that discovered ‘Oumuamua. This artificial object named 2020 SO was not designed to be a solar sail but had thin walls with a large surface-to-mass ratio for a different purpose.

At this time, the possibility that any UAP are extraterrestrial is highly speculative. But if we entertain this possibility for fun, then the tumbling motion of ‘Oumuamua could potentially have been meant to scan signals from all viewing directions. A predecessor to ‘Oumuamua could have been a craft that deposited small probes into the Earth’s atmosphere without being noticed, because it visited before Pan-STARRS started its operations. Along this imaginative line of reasoning, ‘Oumuamua could have arranged to appear as coming from the neutral local standard of rest, which serves as the local “galactic parking lot,” so that its origin would remain unknown.

But rather than simply wonder about possible scenarios, we should collect better scientific data and clarify the nature of UAP. This can be done by deploying state-of-the-art cameras on wide-field telescopes that monitor the sky. The sky is not classified; only government-owned sensors are. By searching for unusual phenomena in the same geographical locations from where the UAP reports came, scientists could clear up the mystery in a transparent analysis of open data.

As noted in my recent book Extraterrestrial, I do not enjoy science fiction stories because the story lines often violate the laws of physics. But we should be open-minded to the possibility that science will one day reveal a reality that was previously considered as fiction.

The largest comet ever discovered in modern times is zooming toward the sun

Strange Mega Comet Heading Towards our Solar System – UN271

  • “We have the privilege of having discovered perhaps the largest comet ever seen.”
  • It has not visited the solar system in more than 3 million years.
  • People here on Earth will likely need to rely on telescopes to capture photographs of it.

This is a big one.

A giant comet – which scientists say is arguably the largest comet discovered in modern times – is on its way toward the sun and will make its closest approach to Earth in 2031.

Listen to this article

“We have the privilege of having discovered perhaps the largest comet ever seen – or at least larger than any well-studied one – and caught it early enough for people to watch it evolve as it approaches and warms up,” said University of Pennsylvania astronomer Gary Bernstein, a co-discoverer of the object.

It is the most distant comet to be discovered on its incoming path, giving us years to watch it evolve as it approaches the sun, the National Science Foundation said. 

The comet is also an infrequent visitor to our neck of the woods: “It has not visited the solar system in more than 3 million years,” Bernstein said in a statement.

The comet, which is estimated to be 60 to 120 miles across, or about 10 times the diameter of most comets, is an icy relic flung out of the solar system by the migrating giant planets in the early history of the solar system.

This comet is quite unlike any other seen before, the National Science Foundation said, and the huge size estimate is based on how much sunlight it reflects. 

This illustration shows the distant Comet Bernardinelli-Bernstein as it might look in the outer solar system. Comet Bernardinelli-Bernstein is estimated to be about 1,000 times more massive than a typical comet, making it arguably the largest comet discovered in modern times.

At its current pace, the comet will travel from its current point just past Neptune’s orbit to nearly reach Saturn’s orbit in 2031, Smithsonian magazine said.

The object probably will only be about as bright as Pluto’s moon Charon at that point, according to New Atlas, so people here on Earth will likely need to rely on telescopes to capture photographs of it. Then it will head back into distant space from where it came.

The comet probably came from the Oort Cloud, which is believed to be a giant spherical shell that surrounds the solar system, according to NASA. Most long-period comets such as this one come from the Oort Cloud, NASA said.

It could be the largest object from the Oort Cloud ever detected, and it is the first comet on an incoming path to be detected so far away.Get the Coronavirus Watch newsletter in your inbox.

Astronomers suspect that there may be many more undiscovered comets of this size waiting in the Oort Cloud. These giant comets are thought to have been scattered to the far reaches of the solar system by the migration of Jupiter, Saturn, Uranus and Neptune early in their history.

The comet is dubbed Bernardinelli-Bernstein after the two astronomers who discovered it: Pedro Bernardinelli (also from the University of Pennsylvania) and Gary Bernstein. Its official name is 2014 UN271.

How will the universe end?

The Beginning to the End of the Universe: The Big Crunch vs. The Big Freeze

Listen to this article

#Space #Cosmology #universe #darkmatter #BigCrunch #BigFreeze #BigRip

Astronomers once thought the universe could collapse in a Big Crunch. Now most agree it will end with a Big Freeze.


If the expanding universe could not combat the collective inward pull of gravity, it would die in a Big Crunch, like the Big Bang played in reverse. However, the cosmos is ballooning up at an ever-increasing rate, which makes most astronomers think the universe will die in a Big Freeze, where any lingering particles are separated by distances greater than the current observable universe.

How will the universe end? Humanity has pondered this question for thousands of years. And now science actually has the knowledge and tools to attempt an answer.

Until rather recently, astronomers thought the cosmos would repeatedly expand and collapse in an infinite cycle of cosmic death and rebirth. But the best evidence points to a distant Armageddon filled with more existential dread than the Book of Revelation. Trillions of years in the future, long after Earth is destroyed, the universe will drift apart until galaxy and star formation ceases. Slowly, stars will fizzle out, turning night skies black. All lingering matter will be gobbled up by black holes until there’s nothing left. Finally, the last traces of heat will disappear.

Alpha and Omega

The universe didn’t always seem destined to end this way. Roughly a century ago, astronomers thought that our Milky Way Galaxy was the entire universe. Our cosmos appeared static — it had always been, and would always remain, roughly the same. However, as Albert Einstein formulated his theories of relativity, he noticed signs of something strange. His equations implied a universe in motion, either expanding or contracting. So Einstein added a fudge factor — a cosmological constant — that held the universe in a more appealing steady state.

“Einstein was not being stupid; he was feeling the feeling of astronomers,” says Nobel Prize-winning cosmologist John Mather, the head scientist for NASA’s James Webb Space Telescope.

However, around the same time, astronomers began to accept that some of the fuzzy spiral-shaped nebulae they observed through their telescopes were not collections of stars in our galaxy. They were other galaxies entirely. And when Edwin Hubble meticulously measured their motions, he showed these galaxies were indeed moving away from our own. Humanity had discovered that the universe is expanding.

Pressing rewind on that expansion ultimately revealed that the entire universe was born in a violent Big Bang some 13.8 billion years ago. With its foundations firmly fixed, cosmology turned to the next great question: How will the universe end?

There are two main ways for an expanding universe to die: The cosmos could eventually collapse back in on itself, or it could continue inflating forever. To find out which is right, astronomers had to fast-forward the evolution of the universe.


There are a few ways the universe might end, but exactly how depends on how the rate of cosmic expansion changes in the future. If gravity overpowers expansion, the cosmos will collapse in a Big Crunch. If the universe continues to expand indefinitely, as expected, we’ll face a Big Freeze. But if dark energy pushes the expansion rate to near infinity, we’ll have a Big Rip that tears everything, even atoms, apart.

The Big Crunch

In 1922, Russian physicist and mathematician Alexander Friedmann derived a famous set of equations aptly named the Friedmann equations. These calculations showed that our universe’s destiny is determined by its density, and it could either expand or contract, rather than remain in a steady state. With enough matter, gravity would eventually halt the cosmos’ expansion, causing it to come crashing back inward.

In the 1960s and 1970s, when astronomers added up all the matter in the known universe, they calculated there was enough mass that the cosmos should ultimately collapse to an infinitely dense state, or perhaps even a gargantuan black hole.

Some speculated that once compressed into an infinitely small point — the Big Crunch — the universe would kickstart yet another expansion, or Big Bounce.

In the 1970s and 1980s, physicist John Wheeler, who helped coin the term black hole, became a leading proponent of the Big Crunch. To him, it was an obvious fate. A revolution in understanding black holes was underway, and Wheeler saw each one as an “experimental model” of the universe’s final state.

But Wheeler’s Big Crunch fondness was partially born from aesthetics, he admitted. It was easy to picture.


NASA’s Spitzer and WISE infrared observatories paired up to reveal this view of the region around the Milky Way’s supermassive black hole, Sagittarius A*. Supermassive black holes are likely to be the last reservoirs of matter in the entire universe. Yet even they will eventually evaporate.NASA/JPL-Caltech/Judy Schmidt

The Big Freeze

Unfortunately, reality is not always so relatable.

“Just because we might find a cold, empty universe an unappealing future doesn’t mean that that’s not where things are headed,” Columbia University physicist Peter Woit writes on his blog, Not Even Wrong.

In the late 1990s, two separate groups of scientists were surveying the distant universe, studying dying stars called type Ia supernovae, which serve as standard candles that help establish cosmic distances. They found distant blasts appeared dimmer, and were therefore farther away, than expected. The universe’s expansion wasn’t slowing down at all — it was speeding up. The teams had independently stumbled onto dark energy, shattering existing models of the universe. (See “The mystery of dark energy,” page 53.)

The expectation-defying discovery of dark energy showed the universe was very unlikely to collapse in a Big Crunch. Even with all the matter in the universe tugging inward, gravity will never be strong enough to overcome the inflating effect of dark energy. In other words, the ballooning universe is destined for a Big Freeze.

These days, astronomers think normal matter comprises just 5 percent of the universe’s contents. Meanwhile, dark matter makes up some 26 percent, and dark energy accounts for the final 69 percent. Dark energy, it turns out, seems to be the real-world force behind Einstein’s cosmological constant, which plays a major role in preventing a Big Crunch-style collapse.

Thanks to the expansion caused by dark energy, within a couple of trillion years, all but the closest galaxies will be too far away to see. Then, perhaps 100 trillion years later, star formation will cease, as dense stellar remnants like white dwarfs and black holes lock up any remaining material.

About a googol years from now — that’s a 1 followed by 100 zeroes — the last objects in the universe, supermassive black holes, will finish evaporating via Hawking radiation. After this, the universe enters a so-called Dark Era, where matter is just a distant memory.

The second law of thermodynamics suggests that entropy will keep increasing in a system (such as the cosmos) until it hits a maximum level. In real terms, that means that at some point, the universe will ultimately reach a state where all energy — and, hence, heat — is uniformly distributed. The final temperature of the entire universe will hover a smidge above absolute zero.

So, rather than mirroring Revelation, the death of our cosmos will likely resemble the beginning of Genesis: All will be empty and dark.

Solar storm to hit earth, could shut down Internet; know online impact

Listen to this article

#Space #CME #solarstorm #internet #astronomy

A solar storm was sent shooting towards the Earth by the Sun. Can the Internet shut down? Know how severe the online impact can be.

A solar storm generated by the Sun, if it is really big, on the scale of the one that hit the Earth in 1859, then it has immense destructive power and can have a huge impact on online infra, including taking down the Internet.
A solar storm generated by the Sun, if it is really big, on the scale of the one that hit the Earth in 1859, then it has immense destructive power and can have a huge impact on online infra, including taking down the Internet. (Pixabay)

The Sun has hurled a solar storm into space and sent it careening on collision course towards the Earth. This poses multiple dangers here on the third rock from the Sun, especially to our digital world. How big an impact will it have on online infrastructure? Will our Internet be safe? Well, the Sun has an 11-year cycle during which it shoots out super-heated magnetised magma, referred to as ‘coronal mass ejections’ (CMEs) into space. The severity of the solar storm depends on which part of the cycle the Sun is in. Also, what is important is the location of the Earth in comparison to the trajectory of the solar flare. If an extremely severe solar storm is generated and the Earth is in its path, there will be a big impact on all communications devices including mobile phones, computers as well as electricity grids. However, if the Earth is not in the path of this severe solar storm, it escapes the destructive consequences.

Solar storm impact: If a really big solar storm was to hit the Earth, it would have an impact on our online activities – it could take down the Internet. How will solar storm affect online activities? Well, Science Focus explains the impact of a solar flare on Earth in an easy to understand manner, “If a CME on a similar scale was to strike the Earth today, it could damage the electronics in orbiting satellites, disrupting navigation and communications systems, as well as the GPS time synchronization that the internet relies on to function. It would also create a surge of electromagnetic radiation in the atmosphere, causing huge currents in our power grids which could burn out electrical transformers, leading to length(y) outages.” But remember, this is a worst-case scenario possibility.

The Mystery of Planet 9 – If It Exists, Why Can’t Researchers See It?

#Space #Astronomy #Planet9 #Solarsystem #Sedna

Does Planet Nine really exist?

Listen to this article

The jury is still out.

For the past few years, the possibility of a new (and big!) planet hanging around in the outermost regions of the solar system has tantalized scientists and the public alike. But after years of searching, astronomers have found zero new planets in that realm. 

Is “Planet Nine” really out there, or not?

The deep dark

We’ve only been studying the region of the solar system past the orbit of Neptune for a few decades now, and after a moment of introspection it’s easy to see why: astronomy out here is kind of challenging, because the objects we’re trying to hunt down are a) very, very small and b) very, very far away. That makes them hard to spot.

Besides Pluto, discovered by basically blind luck in 1930, our understanding of the outer solar system was completely absent until 1992, when astronomers found their first Kuiper Belt object, a frozen little remnant from the formation of the solar system, lazily circling the sun in near perfect darkness beyond Neptune.

Since then, we’ve found thousands more such objects, categorizing and subcategorizing them as we go (as astronomers are wont to do). For the rest of our story, we’ll be focusing on a class of characters known as extreme trans-neptunian objects, or eTNOs. If you’ve never heard that jargon term before, don’t be scared: it’s astronomese for “really, really far past the orbit of Neptune.”

In 2003, astronomers discovered perhaps the strangest eTNO yet, Sedna. Sedna is big, about half the size of Pluto, but sits in a truly ridiculous orbit. Over the course of 11,000 years (twice that of all of recorded human history), Sedna swings from 76 astronomical units (AU; one AU is the distance between the sun and Earth) to over 900 AU, then back again.

Sedna is weird.

The case for nine

The orbit of Sedna is so weird that it demands explanation. How can such a massive almost-planet reach such a huge, detached orbit without getting completely ejected from the solar system altogether?

Perhaps there’s something else out there, keeping Sedna on a leash.

More recently, a couple teams of astronomers began to notice some other funky eTNOs. Namely, a group of half a dozen objects with similar orbits — they had roughly the same amount of ellipticity, and those ellipses were clustered together.

Imagine picking up a random flower from a field and looking at the petals. You’d normally expect the petals to be distributed evenly around the flower, but if you saw them all clustered together you might think something suspicious was going on.

And the same goes for these strange eTNOs: there was no reason to expect these kinds of orbits by random chance. The best explanation, the astronomers claimed, was that a new planet, Planet Nine (until we come up with a better name), was shaping and shepherding them in their orbits.

But still eight remain

Click here for more videos…Join the search for Planet 9 – Here’s how!Look for the elusive Planet 9, brown dwarfs and more with NASA’s citizen scientist program Backyard Worlds.

It’s not a bad argument. The inability to explain the orbit of Uranus led to the detection of Neptune, so there is some historical antecedent to the strategy. And since then, more eTNOs have been found in the same strange, clustered orbits.Advertisement

But in the years since the claim of a ninth planet made headlines, astronomers haven’t snagged a picture of it. Which isn’t too worrisome, at least not yet: if Planet Nine exists, it is very small (relatively) and very far away, making it hard to spot.

And in that same time, other astronomers have weighed in, arguing that the special eTNOs aren’t so special after all. It could be that because of the way our surveys are designed and conducted, we’re simply more likely to spot eTNOs with these funky orbits, and not any of their friends with more normal orbits. In other words, these eTNOs aren’t shepherded by some mysterious entity in the outer solar system. There’s simply nothing to explain — they only look different because we haven’t finished looking yet.

What’s more, it’s hard to square the existence of a ninth planet with the formation of the solar system as we currently understand it. Astronomers can, of course, work to fold in a ninth planet (say, by arguing that it’s an ejected failed core of a planet or a captured rogue exoplanet), but the more complicated the scenario gets, the harder it is to swallow.

Without a smoking-gun picture of the planet, the astronomical community isn’t going to be fully swayed by the wayward motion of a handful of iceballs in the outer solar system. So for now the search for a new planet continues.

Why We Haven’t Met Any Aliens Yet!

#Space #Extraterrestrial #Aliens #Drakeequasion #UFO #exoplanets

Extraterrestrial life refers to life forms that did not originate and are not indigenous to our planet. So this term covers all possible types of life outside the Earth: These can be viruses, but also plant-like life forms. Some go even further: they are looking for creatures that are very similar to humans in their complexity or even surpass them, popularly known as aliens. But if there is extraterrestrial life, why hasn’t anyone heard about it until now? Do so-called aliens even exist? The Fermi Paradox addresses this very question. What approaches there are to this you can find out here!

Listen to this article

Why haven’t we found aliens yet?

A new paper on the Fermi paradox convincingly shows why we will probably never find aliens.

One summer night, when I was a child, my mother and I were scouring the night sky for stars, meteors, and planets.

Suddenly, an object with a light that pulsed steadily from bright to dim caught my eye. It didn’t have the usual red blinkers of an aircraft and was going far too slowly to be a shooting star.

Obviously, it was aliens.

My excitement was short-lived as my mother explained it was a satellite catching the sun as it tumbled along its orbit. I went to bed disappointed: The X-files was on TV twice a week back then, and I very much wanted to believe.

Today that hope is still alive and well, in Hollywood films, the public imagination, and even among scientists. Scientists first began searching for alien signals shortly after the advent of radio technology around the turn of the 20th century, and teams of astronomers across the globe have been taking part in the formal Search for Extraterrestrial Intelligence (SETI) since the 1980s.

Yet the universe continues to appear devoid of life.

Now, a team of researchers at the University of Oxford brings a new perspective to this conundrum. In early June, Anders Sandberg, Eric Drexler, and Toby Ord of the Future of Humanity Institute (FHI) released a paper that may solve the Fermi paradox — the discrepancy between our expected existence of alien signals and the universe’s apparent lack of them — once and for all.

Using fresh statistical methods, the paper re-asks the question “Are we alone?” and draws some groundbreaking conclusions: We Earthlings are not only likely to be the sole intelligence in the Milky Way, but there is about a 50 percent chance we are alone in the entire observable universe.

While the findings are helpful for thinking about the likelihood of aliens, they may be even more important for reframing our approach to the risk of extinction that life on Earth may face in the near future.

Where is everybody?

In 1950, while working at Los Alamos National Laboratory, physicist Enrico Fermi famously exclaimed to his colleagues over lunch: “Where is everybody?”

He had been pondering the surprising lack of evidence of other life outside of our planet. In a universe that had been around for some 14 billion years, and in that time developed more than a billion trillion stars, Fermi reasoned there simply must be other intelligent civilizations out there. So where are they?

We still don’t know, and the Fermi paradox has only strengthened with time. Since the 1950s, humans have walked on the moon, sent a probe beyond our solar system, and even sent an electric sports car into orbit around the sun for fun. If we can go from rudimentary wooden tools to these feats of engineering in under a million years, surely there would have been ample opportunity in our 13.8 billion-year-old universe for other civilizations to have progressed to a similar level — and far beyond — already?

And then, surely there would be some lingering radio signals or visual clues of their expansion reaching our telescopes.

How scientists try to tackle the Fermi paradox, and why this paper is different

Space is a large place, and the task of accurately estimating the likelihood of little green men isn’t exactly easy.

In 1961, astronomer Frank Drake proposed a formula that multiplied seven “parameters” together to estimate N, the number of detectable civilizations we should expect within our galaxy at a given moment in time:

The Drake equation was only intended as a rough tool to stimulate scientific discussion around the probability of extraterrestrial life. However, in the absence of any reasonable alternatives, it has remained astronomers’ only method of calculating the probability of extraterrestrial intelligence. This is problematic because while some parameters, such as R* — the rate of new star formation per year — are relatively well-known, others remain hugely uncertain.

Take L, the average lifespan of a detectable civilization. If we look at the average length of the past civilizations here on Earth, it wouldn’t be unreasonable to assume a low value. If the Romans, Incas, or Egyptians are anything to go by, it seems hard to make it past a few hundred years. On the flip-side, you could argue that once a civilization becomes technologically advanced enough to achieve interstellar travel, it could conceivably last many billions of years.

This enormous uncertainty leaves the Drake equation ultimately vulnerable to the optimism or pessimism of whoever wields it. And this is reflected in previous scientific papers whose results give values of N ranging anywhere from 10 to many billions.

As astronomer and SETI co-founder Jill Tarter eloquently put it in an interview with National Geographic in 2000: “The Drake Equation is a wonderful way to organize our ignorance.”

Sincere attempts to overcome this vulnerability have previously been made via selecting a handful of conservative, medium, and bullish best estimates for each parameter value and then taking an average across them.

In their new paper, titled “Dissolving the Fermi Paradox,” the FHI researchers dispute this method by demonstrating how this technique typically produces a value of N far higher than it should, creating the illusion of a paradox.

This is because simply selecting a few point estimates and plugging them into the Drake Equation misrepresents the state of our knowledge. As an example, imagine three scientists who have differing opinions on the value of L:

If you take a normal, linear average of all the possible integer values from one to 1000, you would implicitly factor scientist C’s opinion 90 times more than scientist A’s because their range of belief is 90 times larger. If you use a logarithmic scale to represent the above so that each scientist’s range corresponds to one order of magnitude, all three opinions will be represented more equally.

Therefore, the researchers represented the full range of possible values on a logarithmic scale and ran millions of simulations to obtain more statistically reliable estimates for N. They then applied a technique known as a Bayesian update to those results. That means mathematically incorporating the information that we have not discovered extraterrestrial intelligence yet (because the absence of evidence of aliens is evidence itself!).

This two-stage process produced striking results: Based upon the current state of astrobiological knowledge, there’s a 53 to 99.6 percent chance we are the only civilization in this galaxy and a 39 to 85 percent chance we are the only one in the observable universe.

This implies that life as we know it is incomprehensibly rare, and if other intelligences exist, they are probably far beyond the cosmological horizon and therefore forever invisible to us.

But life can’t be that rare, can it?

To be clear, the paper’s authors do not appear to be making any definitive claim about whether or not aliens exist; simply, our current knowledge across the seven parameters suggests a high likelihood of us being alone. As new information becomes available, they would update that likelihood accordingly. For example, if we discover a second instance of abiogenesis — the process of rudimentary life emerging from non-living matter — on a comet or another planet, then this would narrow the uncertainty on the fl parameter significantly.

Nonetheless, their results have certainly caused a stir, especially after SpaceX CEO Elon Musk tweeted them:

Many reacted to the paper’s findings by calling it anthropocentric and narrow-minded, arguing that any conclusion suggesting we Earthlings are somehow special is simply human arrogance.

This is somewhat understandable because the idea that intelligent life is extremely rare in the universe feels completely counterintuitive. We exist, along with other intelligent life like dolphins and octopi, so we assume what we see must be extrapolatable beyond Earth.

But this alone is not proof that intelligent civilizations are therefore ubiquitous. Whether the true likelihood is as high as one in two, or as inconceivable as one in a trillion trillion trillion, the mere ability to consciously ask ourselves that question depends on the fact that life has already successfully originated.

This phenomenon is known as an observer selection effect — a bias that can occur when thinking about the likelihood of an event because an observer has to be there to observe the event in the first place. As we only have one data point (us), we have no reliable way to predict the true likelihood of intelligent life. The only conclusion we can confidently draw is that it can exist.

So if we are alone, is this good or bad news?

Regardless of which side you take, the idea that we might be alone in the universe raises serious scientific and philosophical questions. Is our rareness something to celebrate or be disappointed by? What would it mean for humans to be the only conscious entities in the universe?

This last question matters hugely. Not only are we depleting our environmental resources at an unsustainable pace, but for the first time in the history of mankind, we’ve reached the technological stage where we hold the entire future of our species in our own hands. Within a few years we built enough nuclear weapons to exterminate every human on earth many times over and made these weapons available to our leaders on a hair-trigger. Each decade has brought us novel technologies with ever-increasing potential for both immense good and immense destruction.

As we rang in the new year, the Bulletin of Atomic Scientists moved the Doomsday Clock to the closest it has ever been to midnight. Meanwhile, estimates from various specialists in existential risk suggest somewhere between a 5 to 19 percent chance of complete human extinction by the end of this century — an unacceptably large probability considering the stakes.

Not only does this dark gamble affect the 7 billion of us alive today; if you factor in the moral weight of the billion billions of future people who would also never get to live out their existences, it becomes clear that we urgently need to get our collective act together.

As Carl Sagan famously said in his 1990 Pale Blue Dot speech: In all this vastness, there is no hint that help will come from elsewhere to save us from ourselves. The Earth is the only world known so far to harbor life. … the Earth is where we make our stand.”

He’s not wrong, especially in light of this paper’s findings. If humanity really is the only civilization that may ever exist in this universe, then we shoulder a responsibility on a truly astronomical scale.

Ride Along With Juno Past Ganymede And Jupiter

#space #Juno #Ganymede #Jupiter #NASA

Listen to this article

Ride along with Juno

The Juno spacecraft made its most recent flyby of the giant planet Jupiter on June 8, 2021. Shortly before its closest point to Jupiter – the 34th of the mission, or perijove 34 – Juno flew closer to Jupiter’s large moon Ganymede than any spacecraft has in more than two decades. On July 14, NASA released the beautiful video above. It lets you ride along with the Juno spacecraft on this most recent sweep past Ganymede and Jupiter. The video is gorgeous and evocative. Juno’s principal investigator Scott Bolton of the Southwest Research Institute in San Antonio said in a statement:

The animation shows just how beautiful deep space exploration can be. It’s a way for people to imagine exploring our solar system firsthand by seeing what it would be like to be orbiting Jupiter and flying past one of its icy moons.

The images to make this time-lapse animation came from JunoCam, the visible-light camera/telescope aboard the Juno spacecraft. NASA 

The 3:30-minute-long animation begins with Juno approaching Ganymede. It passed within 645 miles (1,038 km) of Ganymede’s surface at a relative velocity of 41,600 mph (67,000 kph). The imagery shows several of the moon’s dark and light regions. Darker regions are believed to result from ice sublimating into the surrounding vacuum, leaving behind darkened residue. The imagery also shows the crater Tros, which is among the largest and brightest crater scars on Ganymede.

It takes just 14 hours, 50 minutes for Juno to travel the 735,000 miles (1.18 million km) between Ganymede and Jupiter. The viewer is transported to within just 2,100 miles (3,400 km) above Jupiter’s spectacular cloud tops. By that point, Jupiter’s powerful gravity has accelerated the spacecraft to almost 130,000 mph (210,000 kph) relative to the planet.

Among the Jovian atmospheric features that can be seen are the circumpolar cyclones at the north pole and five of the gas giant’s string of pearls. These are eight massive storms rotating counterclockwise in Jupiter’s southern hemisphere. They appear as white ovals.

Using information that Juno has learned from studying Jupiter’s atmosphere, the animation team simulated lightning one might see as we pass over Jupiter’s giant thunderstorms.

Planet Jupiter seen close up, with a string of 5 white ovals visible on its surface amid parallel swirly bands.
View larger. | JunCam image of Jupiter during the June 8, 2021, flyby (perijove 34). We see the white ovals known as Jupiter’s “string of pearls.” They are massive counterclockwise-rotating storms in the atmosphere of the giant planet’s southern hemisphere. Since 1986, they’ve varied in number from 6 to 9. There are currently 8 white ovals on Jupiter, of which 5 are seen here. Image via SWRI.

How they made the video

Citizen scientist Gerald Eichstädt used composite images of Ganymede and Jupiter to give us the camera’s point of view. For both Ganymede and Jupiter, NASA said:

JunoCam images were orthographically projected onto a digital sphere and used to create the flyby animation. Synthetic frames were added to provide views of approach and departure for both Ganymede and Jupiter.

Juno mission extended to 2025

NASA said that, as planned, Jupiter’s gravitational pull has now affected Juno’s orbit. The craft has been in a highly elliptical polar orbit of 53 days since 2016. In other words, it has been passing close to the giant planet only that often. Now Jupiter’s strong gravity has reduced Juno’s orbit to 43 days.

The Juno mission was originally scheduled to end in July 2021. But in January of this year, NASA extended the mission. Juno will now continue exploring Jupiter through September 2025, or until the spacecraft’s end of life. NASA said on January 13, 2021:

This expansion tasks Juno with becoming an explorer of the full Jovian system – Jupiter and its rings and moons – with multiple rendezvous planned for three of Jupiter’s most intriguing Galilean moons: Ganymede, Europa, and Io.

The next Juno flyby of Jupiter, the 35th of the mission, is scheduled for a few days from now, July 21, 2021.

Ride along with Juno: Animation showing the looping orbit of Juno around Jupiter.
The purple loops represent the Juno spacecraft’s orbit. Jupiter is the green dot. Juno follows a highly elliptical, polar orbit around Jupiter, designed to minimize its exposure to Jupiter’s radiation belts. Each orbit is slightly adjusted so the craft will fly over a different face of Jupiter when closest. Thus Juno has studied Jupiter’s entire surface over its 37 planned orbits between 2016 and July 2021. Image via Phoenix7777/ Wikimedia Commons.

Bottom line: A beautiful video showing the most recent flyby of the Juno spacecraft at Jupiter. In the course of this flyby, Juno came closer to Jupiter’s large moon Ganymede than any spacecraft has in two decades.

REAL Possibilities for Interstellar Travel

#Space #interstellar #Wormhole #Ion #Rocket

These New Technologies Could Make Interstellar Travel Real

Long considered science fiction, leaving the solar system and speeding amid the stars may soon be within reach

Listen to this article

Beyond Solar System - NASA

(Credit: Charles Carter/Keck Institute for Space Studies via NASA)

On October 31, 1936, six young tinkerers nicknamed the “Rocket Boys” nearly incinerated themselves in an effort to break free of Earth’s gravity. The group had huddled in a gully in the foothills of California’s San Gabriel Mountains to test a small alcohol-fueled jet engine. They wanted to prove that rocket engines could venture into space, at a time when such ideas were widely met with ridicule. That goal was disrupted when an oxygen line caught fire and thrashed around wildly, shooting flames.

The Rocket Boys’ audacity caught the attention of aerodynamicist Theodore von Karman, who already worked with two of them at Caltech. Not far from the location of their fiery mishap, he established a small test area where the Rocket Boys resumed their experiments. In 1943, the site became the Jet Propulsion Laboratory (JPL), and von Karman its first director. JPL has since grown into a sprawling NASA field center with thousands of employees, yet it has managed to retain its founding motivation: test the limits of exploration, convention be damned.

They’ve had many successes over the years. In the early 1970s, JPL engineers built Pioneer 10, the first spacecraft to reach escape velocity from the solar system. A few years later, they followed up with Voyagers 1 and 2, the fastest of the many objects aimed at interstellar space. From the beginning of the Space Age to the launch of the Voyager spacecrafts — a span of just two decades — rocket scientists more than doubled flight speeds. But in the decades since, only one more spacecraft has followed the Voyagers out of the solar system, and nothing has done so at such a high speed. Now JPL’s rocketeers are getting restless again, and quietly plotting the next great leap.

The consistent theme of the new efforts is that the solar system is not enough. It is time to venture beyond the known planets, on toward the stars. John Brophy, a flight engineer at JPL, is developing a novel engine that could accelerate space travel by another factor of 10. Leon Alkalai, a JPL mission architect, is plotting a distant journey that would begin with an improbable, Icarus-esque plunge toward the sun. And JPL research scientist Slava Turyshev has perhaps the wildest idea of all, a space telescope that could provide an intimate look at a far-off Earth-like planet — without actually going there.

These are all long shots (not entirely crazy, according to Brophy), but if even one succeeds, the implications will be huge. The Rocket Boys and their ilk helped launch humans as a space-faring species. The current generation at JPL could be the ones to take us interstellar.

Dawn Spacecraft - NASA

NASA’s Dawn spacecraft used ion propulsion to explore Ceres. Future missions could take the tech even further. (Credit: NASA-JPL/Caltech)

Rocket Reactions

For Brophy, inspiration came from Breakthrough Starshot, an extravagantly bold project announced in 2016 by the late Stephen Hawking and Russian billionaire Yuri Milner. The ultimate aim of the project is to build a mile-wide laser array that could blast a miniature spacecraft to 20 percent the speed of light, allowing it to reach the Alpha Centauri star system (our closest stellar neighbor) in just two decades.

Brophy was skeptical but intrigued. Ambitious aspirations are nothing new for him. “JPL encourages people to think outside the box, and my wacky ideas are getting wackier in time,” he says. Even by that standard, the Starshot concept struck him as a little too far from technological reality. But he did begin to wonder if he could take the same concept but scale it down so that it might actually be feasible within our lifetimes.

What especially captivated Brophy was the idea of using a Starshot-style laser beam to help deal with the “rocket equation,” which links the motion of a spacecraft to the amount of propellant it carries. The rocket equation confronts every would-be space explorer with its cruel logic. If you want to go faster, you need more fuel, but more fuel adds mass. More mass means you need even more fuel to haul around that extra weight. That fuel makes the whole thing heavier still, and so on. That’s why it took a 1.4 million-pound rocket to launch the 1,800-pound Voyager probes: The starting weight was almost entirely fuel.

Since his graduate student days in the late 1970s, Brophy has been developing a vastly more efficient type of rocketry known as ion propulsion. An ion engine uses electric power to shoot positively charged atoms (called ions) out of a thruster at high velocity. Each atom provides just a tiny kick, but collectively they can push the rocket to a much greater velocity than a conventional chemical rocket. Better yet, the power needed to run the ion engine can come from solar panels — no heavy onboard fuel tanks or generators required. By squeezing more speed out of less propellant, ion propulsion goes a long way toward taming the rocket equation.

But ion engines come with drawbacks of their own. The farther they get from the sun, the more limited they are by how much electricity their solar panels can generate. You can make the panels huge, but then you add a lot of weight, and the rocket equation slams you again. And ion engines have such gentle thrust that they can’t leave the ground on their own; it then takes them a long time in space to accelerate to their record-breaking speeds. Brophy knows these issues well: He helped design the ion engine aboard NASA’s Dawn spacecraft, which just completed an 11-year mission to asteroid Vesta and dwarf planet Ceres. Even with its formidable 65-foot span of solar cells, Dawn went from zero to 60 in an unhurried four days.

Space Laser for Interstellar Travel - Smith/Discover

An orbiting laser system could power an ion propulsion vehicle through the solar system, and prove reusable. (Credit: Jay Smith/Discover)

Ion the Prize 

While Brophy was pondering this impasse between efficient engines and insufficient solar power, the Breakthrough Starshot concept came out, and it got the gears turning in his head. He wondered: What if you replaced sunshine with a high-intensity laser beam pointed at your spacecraft? Powered by the more efficient laser, your ion engine could run much harder while still saving weight by not having to carry your power source on board.about:blankabout:blank

Two years after his epiphany, Brophy is giving me a tour of an SUV-size test chamber at JPL, where he puts a high-performance ion engine through its paces. His prototype uses lithium ions, which are much lighter than the xenon ions Dawn used, and therefore need less energy to attain higher velocities. It also runs at 6,000 volts compared with Dawn’s 1,000 volts. “The performance of this thing would be very startling if you had the laser to power it up,” he says.

There’s just one minor issue: That laser does not exist. Although he drastically downsized the Starshot concept, Brophy still envisions a 100-megawatt space-based laser system, generating 1,000 times more power than the International Space Station, aimed precisely at a fast-receding spacecraft. “We’re not sure how to do that,” he concedes. It would be by far the biggest off-world engineering project ever undertaken. Once built, though, the array could be used over and over, with different missions, as an all-purpose rocket booster.

As an example, Brophy describes a lithium-ion-powered spacecraft with 300-foot wings of photovoltaic panels powering a full-size version of the engine he is developing at JPL. The laser would bathe the panels in light a hundred times as bright as sunshine, keeping the ion engine running from here to Pluto, about 4 billion miles away. The spacecraft could then coast along on its considerable velocity, racking up another 4 billion miles every year or two.

At that pace, a spacecraft could rapidly explore the dim areas where comets come from, or set off for the as-yet-undiscovered Planet 9, or go … almost anywhere in the general vicinity of the solar system.

“It’s like we have this shiny new hammer, so I go around looking for new nails to pound in,” Brophy says dreamily. “We have a whole long list of missions that you could do if you could go fast.”

Interstellar Medium Diagram - NASA

Only the Voyager probes have passed the heliopause, leaving the sun’s influence. New probes may one day study the interstellar medium lying beyond. (Credit: NASA-JPL/Caltech)about:blankabout:blank

Interstellar Medium Well 

After Brophy’s genial giddiness, it is a shock to talk to Alkalai, in charge of formulating new missions at JPL’s Engineering and Science Directorate. Sitting in his large, glassy office, he seems every bit the no-nonsense administrator, but he, too, is a man with an exploratory vision.

Like Brophy, Alkalai thinks the Breakthrough Starshot people have the right vision, but not enough patience. “We’re nowhere near where we need to be technologically to design a mission to another star,” he says. “So we need to start by taking baby steps.”

Alkalai has a specific step in mind. Although we can’t yet visit another star, we can send a probe to sample the interstellar medium, the sparse gas and dust that flows between the stars.

“I’m very interested in understanding the material outside the solar system. Ultimately, we got created from that. Life originated from those primordial dust clouds,” Alkalai says. “We know that there’s organic materials in it, but what kind? What abundances? Are there water molecules in it? That would be huge to understand.”about:blankabout:blank

The interstellar medium remains poorly understood because we can’t get our hands on it: A constant blast of particles from the sun — the solar wind — pushes it far from Earth. But if we could reach beyond the sun’s influence, to a distance of 20 billion miles (about 200 times Earth’s distance from the sun), we could finally examine, for the first time, pristine samples of our home galaxy.

Alkalai wants answers, and he wants to see the results firsthand. He’s 60, so that sets an aggressive schedule — no time to wait for giant space lasers. Instead, he proposes a simpler, albeit still unproven, technology known as a solar thermal rocket. It would carry a large cache of cold liquid hydrogen, protected somehow from the heat of the sun, and execute a shocking dive to within about 1 million miles of the solar surface. At closest approach, the rocket would let the intense solar heat come pouring in, perhaps by jettisoning a shield. The sun’s energy would rapidly vaporize the hydrogen, sending it racing out of a rocket nozzle. The combined push from the escaping hydrogen, and the assist from the sun’s own gravity, would let the ship start its interstellar journey at speeds up to 60 miles per second, faster than any human object yet —and it only gets faster from there.

“It’s very challenging, but we’re modeling the physics now,” Alkalai says. He hopes to begin testing elements of a thermal-rocket system this year, and then develop his concept into a realistic mission that could launch in the next decade or so. It would reach the interstellar medium another decade after that. In addition to sampling our galactic environment, such a probe could examine how the sun interacts with the interstellar medium, study the structure of dust in the solar system and perhaps visit a distant dwarf planet along the way.

It would be a journey, Alkalai says, “like nothing we’ve done in the past.”

Solar Gravitational Lens - Various, Jay Smith/Discover

How a solar gravitational lens works. (Credits: Courtesy of Slava Turyshev; The Aerospace Corp.; Jim Deluca/Jimiticus via YouYube (2); Jay Smith)

Catch A Glimpse

Solar thermal rockets and laser-ion engines, impressive as they may be, are still absurdly inadequate for crossing the tremendous gulf between our solar system and exoplanets — planets orbiting other stars. In the spirit of the Rocket Boys, Turyshev is not letting absurdity stop him. He is developing a cunning workaround: a virtual mission to another star.

Turyshev tells me he wants to send a space telescope to a region known as the solar gravitational lens (SGL). The area begins a daunting 50 billion miles away, though that’s still hundreds of times closer than our closest stellar neighbors. Once you get far enough into the SGL, something marvelous happens. When you look back toward the sun, any object directly behind it appears stretched out, forming a ring, and hugely magnified. That ring is the result of our star’s intense gravity, which warps space like a lens, altering the appearance of the distant object’s light.

If you position yourself correctly within the SGL, the object being magnified from behind the sun could be an intriguing exoplanet. A space telescope floating at the SGL, Turyshev explains, could then maneuver around, sampling different parts of the light ring and reconstructing the snippets of bent light into megapixel snapshots of the planet in question.

I have to interrupt him here. Did he say megapixel, like the resolution you get on your camera phone? Yes, he really is talking about an image measuring 1,000 by 1,000 pixels, good enough to see details smaller than 10 miles wide on a planet up to 100 light-years (600 trillion miles!) away.

“We could peek under the clouds and see continents. We could see weather patterns and topography, which is very exciting,” Turyshev says. He doesn’t mention it, but he doesn’t need to: That kind of resolution could also reveal megacities or other giant artificial structures, should they exist.

Assuming the JPL boffins can solve the transportation issues of getting to the SGL, the mission itself is fairly straightforward, if enormously challenging. Turyshev and his collaborators (Alkalai among them) will need to develop a Hubble-size space telescope,

or a mini-fleet of smaller telescopes, that can survive the 30-year journey. They will need to perfect an onboard artificial intelligence capable of running operations without guidance from home. Above all, they will need a target — a planet so intriguing that people are willing to spend decades and billions of dollars studying it. NASA’s TESS space telescope is doing some of that reconnaissance work right now, scanning for Earth-size worlds around local stars.

“Ultimately, to see the life on an exoplanet, we will have to visit. But a gravity lens mission allows you to study potential targets many decades, if not centuries, earlier,” Turyshev says merrily.

A journey to the SGL would take us beyond Alkalai’s baby steps, well onto the path toward interstellar exploration. It’s another audacious goal, but at least the odds of catching fire are much lower this time around.

NASA’s Mars rover snaps shots of unique rock formation in ‘ancient lakebed’

#Mars #Rover #Astronomy #Space #NASA

Listen to this article

NASA’s Mars rover Perseverance has sent pictures back to Earth of a unique rock formation within what the space agency called an “ancient lakebed” in its latest reported discovery during it mission on the Red Planet.

“Check out this patch of rock I found: looks kind of like garden pavers, and is probably exposed bedrock,” read a message from the research robot’s Twitter account on Wednesday. “Material like this, from the early days of this ancient lakebed, can help capture what that lake was like. Spending a few days investigating…”

Perseverance arrived on Mars on Feb. 18 after a six-month journey through space. The rover’s landing site was at the Jezero Crater, and “scientists believe the area was once flooded with water and was home to an ancient river delta,” according to NASA.

Check out this patch of rock I found: looks kind of like garden pavers, and is probably exposed bedrock. Material like this, from the early days of this ancient lakebed, can help capture what that lake was like. Spending a few days investigating…— NASA’s Perseverance Mars Rover (@NASAPersevere) July 14, 2021

The rover is being assisted by Integrity, NASA’s Mars helicopter, which made its ninth flight on Mars earlier this month. Integrity made history on April 19 by completing the first controlled flight by an aircraft on a planet other than Earth.

“My science team is poring over these color images from the #MarsHelicopter’s latest flight,” Perseverance’s Twitter account posted last week along with video of Martian terrain. “Ingenuity crossed over a region that would be tricky for me to drive on, adding a new perspective to the picture of Jezero Crater that I’m piecing together.”

My science team is poring over these color images from the #MarsHelicopter’s latest flight. Ingenuity crossed over a region that would be tricky for me to drive on, adding a new perspective to the picture of Jezero Crater that I’m piecing together.

More:— NASA’s Perseverance Mars Rover (@NASAPersevere) July 9, 2021

Perseverance marked NASA’s ninth landing on Mars and is the agency’s fifth rover. She is also the largest, weighing in at more than a metric ton.

Calling all aliens: What’s the best way to contact our galactic neighbors?

#Alien #Communication #ET #UAP #Civilization #Extraterrestrial

Making contact with probes would be better than trying to start a conversation across 100 light years of space

Making contact with probes would be better than trying to start a conversation across 100 light years of spacediverspixel/DepositphotosVIEW 34 IMAGES

Listen to this article

August 20, 2017 marks the 40th anniversary of the launch of the the first NASA Voyager mission, which is carrying a golden record filled with messages to potential civilizations beyond our solar system. This year is also the 20th anniversary of the sci-fi film Contact that dealt with receiving radio messages from extraterrestrials. Both the record and the film were brain children of the late Carl Sagan and raise an interesting question: which approach has the greater chance of success of making contact with aliens – sending radio messages or unmanned probes?

First contact with extraterrestrial civilizations has long fascinated scientists, philosophers, and writers. It’s been the topic explored by serious scientific studies, crackpots, tabloids, science fiction epics, and international debates. The speculated results of the first meeting of man and alien run the entire gamut of imagination. Visits by aliens or receiving greetings from the stars has been seen as ranging from wonderfully transcendent, with the human race raised to the next step in evolutionary perfection, to us ending up as the main course on someone’s dinner table.

Whether the outcome is the end of 2001: a Space Odyssey or To Serve Man, how will we establish contact with whoever or whatever lives beyond our solar system? Will our first contact be an alien spaceship carrying little green men? A probe operated by an artificial intelligence? A mysterious artifact buried on the Moon? A radio signal blaring out from the stars? Zaphod Beeblebrox crashing a party in Islington?

The Allen Telescope Array
The Allen Telescope Array

The problem with answering this question is that we know literally nothing about any other intelligent life forms. We don’t even know if they exist or even how probable their existence is. As to how they think, their limitations, or what manner they might choose to make themselves known to us, these are questions that are so complex that it often wanders into the realm of metaphysics, if not theology.

A much easier way of reaching an answer is to ask not “How will they contact us?” but “How will we contact them?” If we can answer the latter, then we are a great deal closer to answering the former. Knowing how to send messages tells you how to receive them.

First attempts

The idea of trying to contact ET is the reverse of the conventional practice of the Search for ExtraTerrestrial Intelligence (SETI). Founded in 1984, SETI is a passive search for signs of other civilizations, usually in the form of radio signals showing definite signs of intelligence, though other evidence might be sought. Deliberate contact attempts are called Active SETI or METI (Messaging to ExtraTerrestrial Intelligence), a term coined by the Russian scientist Alexander Zaitsev to denote an aggressive program of composing and sending messages to the stars.

But this idea isn’t particularly new. In fact, proposals for contacting other planetary bodies go back as far as around 1820 when the Joseph Johann von Littrow, director of the Vienna Observatory, suggested creating circles, squares and triangles 30 km on a side in the Sahara Desert by digging ditches one kilometer-wide and filling them with water topped with kerosene. This would be set alight at night in the hopes of contacting anyone on the Moon or Mars.

In 1868, inventor Charles Cros put forward a plan to the French Academy of Sciences to set up giant parabolic mirrors reflecting arc lamps with a focal length equal to the distance between Earth and Mars. Cros’ plan was to concentrate the sun’s rays on the Martian desert to carve geometric figures and numbers in molten glass on the surface. In another proposal, he suggested building an enormous checkerboard with shiny surfaces that could be uncovered to form shapes and patterns like a mechanical digital display that the Martians could view using telescopes.

In the 1890s, the Reverend W S Lach-Szyrma suggested lighting up the Riga, the Malvern Hills, or Lake Michigan with geometric patterns. Meanwhile, German mathematician Karl Friedrich Gauss recommended creating a giant right-angle triangle in Siberia using 15 km-wide strips of forest with fields of wheat as the background to form the famous geometric solution to the Pythagorean theorem. The whole thing would have been about the size of Ireland.

Not to be outdone, electrical pioneer Nikola Tesla in 1896 claimed that a more advanced version of his device for transmitting electrical power without wires could be used to contact Mars, and in 1899 he said that he’d detected signals from the Red Planet.

Hugo Gernsback's idea for contacting the planets
Hugo Gernsback’s idea for contacting the planets

But perhaps the prize for the most ambitious early scheme should go to the popular science publisher and science fiction pioneer Hugo Gernsback, who in the February 1927 edition of his Radio News magazine put forward the idea of building a directional radio transmitter belting out 100,000 kilowatts in the two-meter band. True, it would have to have been a heavy bar of silver or copper glowing white hot to take all that power, but Gernsback claimed that it could not only communicate with Venus or Mars, but could also bounce radio signals off the Moon and back to Earth.

Is there anybody there?

But if we’re going to talk to other civilizations, where do we start? We start with answering a few basic questions, like is there anyone to talk to? For our purposes, we don’t need to go into all the complexities of astrobiology, planet formation or how to define the habitable zone. What we need is a rough idea of the probability of the present existence of intelligent life, how far away they are, and how advanced they are. This will tell us not only where to direct our efforts, but also when we can expect a reply, and whether they’ll understand us.

These are questions that go back to the late 1950s when the SETI field was first pioneered by Cornell scientists Giuseppe Cocconi, Philip Morrison and Frank Drake at the Green Bank radio observatory. Back then, the field was marked by swift innovation and brilliant out-of-the-box thinking because these scientists didn’t know what was possible or impossible. Many of our ideas about METI date back to this time.

One of the key tools for finding out if anyone is out there is the famous Drake Equation written in 1961, which is expressed as follows:

N = R* • fp • ne • fl • fi • fc • L

  • N is the number of technological civilizations in our galaxy
  • R* is the average rate of star formation in our galaxy
  • fp is the fraction of stars that have planets
  • ne is the average number of planets that can support life
  • fl is the fraction of those planets that develop life
  • fi is the fraction of planets with intelligent life
  • fc is the fraction of planets with technological civilizations
  • L is the lifespan of these technological civilizations

If you can find the numbers for each of these variables and plug them in, you should have a good idea of how many civilizations are out there for us to talk to. The problem is that even after almost 60 years of research, there are no reliable numbers for any of these variables. True, we know more about stellar evolution, we have discovered thousands of planets orbiting other stars and we do have a better idea of what type of planetary systems there are out there, but the specific numbers remain unknown.

The most important variable is L, which denotes the lifespan of a technological civilization. Even if all the other variables are nailed down, this one will determine the final answer. If such a civilization lasts only about a century, then we may be the only one. If they last for millions of years, there could be millions of civilizations out there. The irony is that we have no way to set L until we actually witness the rise and fall of other technological civilizations.

A telescope at the Green Bank observatory
A telescope at the Green Bank observatory

Our alternative is to take our only example of a planet with intelligent life (Earth) and look for somewhere that’s a relatively close match. That means looking for a single G main sequence star not too close to the galactic center and not too far on the edge. It should have a rocky planet about the size of the Earth with a large moon and sit in its star’s habitable zone.

Such a search would have been beyond our capabilities just a few decades ago, but modern exoplanet-hunting techniques have changed the game. True, nothing close to a near-Earth analog has been found (yet) and the nature of planet hunting tends toward extreme examples, but the ongoing planetary surveys have allowed us to eliminate many systems as candidates in the same way as the Mars and Venus probes put paid to any future projects to contact Venusians and Martians.

It would be nice if the Drake Equation was more tractable, because if we knew how probable another civilization was, we would know how likely it is that one was within a hundred light years of us. If it is very probable, then the probability of another civilization in our neighborhood increases. If it’s improbable, then such a civilization could be thousands or even millions of light years away, if it’s out there at all.

One of the original radio telescopes at Green Bank
One of the original radio telescopes at Green Bank

On the bright side, since we don’t know, we have no reason not to send our message to nearby candidate stars unless our surveys show they have no Earth-like planets orbiting them. According to some estimates, there are 19 G-type stars within 10 parsecs (32 light years) of Earth, with the nearest only four light years away, so we have some to start with. And with hundreds of million more in the galaxy, we won’t run out anytime soon.

Are aliens watching Hitler on the telly?

The next question is, how are we going to send our message? The obvious answer is radio. But it’s not a matter of pressing the mic button and starting to talk. One common misconception fostered by a certain movie is that radio communication with the stars is so easy that we’re doing it now without our knowledge. Are the inhabitants of some planet about 80 light years from Earth watching television broadcasts of Adolph Hitler opening the 1936 Berlin Olympics? Very probably not.

There are many different kinds of radio and most of them are unsuitable for communicating with the Moon, much less the stars. True, we can communicate with a deep space probe 11 billion mi (19 billion km) from Earth, but that’s because we use very powerful transmitters on Earth focusing a very tight beam, while the receivers are giant dishes precisely aimed at the transmitting spacecraft.

Other forms of radio don’t have a hope. AM transmissions simply can’t cover much distance and shortwave broadcasts bounce off the Earth’s ionosphere. As for television broadcasts, they can travel beyond our atmosphere and into deep space, as can very powerful military radars. For decades, these have been blasting out into space in a bubble that now has a radius of about a hundred light years.

The 1936 Summer Olympics in Berlin were the first to be televised
The 1936 Summer Olympics in Berlin were the first to be televised

At first, this makes the Earth seem like a bright radio beacon with aliens 50 light years away able to tune into Star Trek on a weekly basis. But the problem is two-fold. First, the television and similar transmissions are being broadcast in all directions, meaning that their strength is weakened by the factor of the radius squared. This means that the entire Earth from, for example, 1966 would have a brightness of 10-55 watts per square centimeter at a distance of 10 light years. That’s ten million times too faint to be detected at all, much less not be lost in all the background static. To be picked up at 100 light years, a television broadcast would need 1020 watts behind it.

It gets even worse. These broadcasts are coming from fixed spots on the Earth, which is rotating and revolving around the Sun. This makes the signals intermittent and subject to Doppler effects that distort them. Then there’s the effect of distortion by the Earth’s atmosphere, the Earth’s magnetic field, the Sun’s magnetic field, other stars, interstellar dust and gas, energetic objects, and the omnipresent cosmic microwave background radiation (CMBR) left over from the Big Bang. Add all that together and Hitler’s cosmic broadcast petered out at less than two light years.

What we are talking about here are the ultimate limits of radio communications. Despite having been at this for a little over a century, we’re already close to these limits and anyone else out there will likely be, too. This means that so long as we’re sending out electromagnetic waves, we’re likely on a level playing field no matter how advanced the other party is.

Designing the transmitter

To communicate with the stars, we need to consider three factors. First, the transmission, which must be in the form of a directed, monochromatic beam. Second, the power behind that beam must be high enough to carry information. And third, the frequency of the beam must be able to penetrate space for thousands of light years, yet have enough bandwidth to carry a message.

Ideally, the best system would be one where we design both the transmitter and receiver. Of course, we can’t do this for the first message, but there’s no reason why that message can’t include instructions on how to build a compatible receiver.

The transmitter we’d use isn’t too hard to figure out because we’ve already built several of them in the form of the radio telescopes at Arecibo in Puerto Rico, Jodrell Bank in England, and Pingtang in China, among others. To these giant dishes can be added arrays of multiple dishes, including the Very Large Array and the Allen Telescope Array.

The Arecibo radio telescope
The Arecibo radio telescope

One requirement for setting up a communication base is that it needs to be in a radio quiet zone where even mobile phone use is heavily restricted. The scene in Contact where Jodie Foster’s character is excitedly shouting orders into a walkie talkie about the message from space she’s discovered as she drives by the radio telescope dishes would have been more realistic if her colleagues at the other end angrily shouted back for her to shut up because she’s drowning out the signal.

Choosing a frequency

The next step is choosing what frequency to transmit at, which is a mixture of technical details, economy, and second guessing whoever is listening.

One premise that SETI scientists work on is astronomer Frank Drake’s Principle of Economy, which, to put it simply, is anyone we’re likely to contact will be economical and minimize the personnel, materials, and energy to achieve their ends. In other words, their bureaucrats will be as penny pinching as ours because a species that is careful with its resources will have a better survival advantage.

This means that the aliens will also assume that the frequency we choose will be the one that conserves transmitter power and costs the least energy per bit to send. At the same time, the frequency needs to be easy to generate and detect, not susceptible to much deflection, interference, or absorption by interstellar dust and gas. One other factor that helps whittle down the options is that the signal has to go through our atmosphere and we assume that the receiver is inside a similar habitable atmosphere.

Leaving out the math, the most likely band to achieve all this is between 1,000 and 10,000 MHz. The problem is that there are nine billion frequencies in this range, so which to choose? The answer is to pick one that would be recognized anywhere in the universe. SETI researchers consider two in what is called the “watering hole” as the most likely. That is the frequency of neutral hydrogen at 1,420 MHz and the Hydroxyl (OH) radical frequency at 1,721 MHz. Since Hydrogen is the most common element in the universe, and combining H with OH produces H₂O, these are most likely spots on the spectrum that someone will be listening to.

Diagram of the radio spectrum showing communication windows
Diagram of the radio spectrum showing communication windows

“Nature has provided us with a rather narrow band in this best part of the spectrum that seems especially marked for interstellar contact,” said leading SETI advocate Bernard Olive. “It lies between the spectral lines of hydrogen and the hydroxyl radical. Standing like the Om and the Um on either side of a gate, these two emissions of the disassociation products of water beckon all water-based life to search for its kind at the age old meeting place for all species: the water hole. Water-based life is almost certainly the most common form and well may be the only naturally occurring form.

“Romantic? Certainly. But is not romance itself a quality peculiar to intelligence? Should we not expect advanced beings elsewhere to show such perceptions? By the dead reckoning of physics we have narrowed all the decades of the electromagnetic spectrum down to a single octave where conditions are best for interstellar contact. There, right in the middle, stand two signposts that taken together symbolize the medium in which all life we know began. Is it sensible not to heed such signposts? To say, in effect: I do not trust your message, it is too good to be true.”

Lasers, neutrinos and other exotics

But radio isn’t our only option. What about lasers? We’re already experimenting with them for communication with deep space probes, and SETI researchers are looking for signs of someone else using them, too.

Lasers have many advantages. They’re tightly focused, highly directional, and monochromatic. Using an infrared beam focused by a large mirror or array, it could transmit messages at a much higher rate than a radio transmitter. Or it could be used to distort the solar spectrum by tuning the laser in to a stellar absorption band, which would look like an artificial spectral line to an alien astronomer. This would certainly gain attention and it could be made to wink on and off to send messages.

If we want to go further afield, we could use High Energy Particles (HEPs), including gamma rays, neutrinos, gravitons, and tachyons. Some are little more than theoretical, and others pose technological barriers that may never be surmounted, but they potentially have tremendous advantages.

Lasers are another candidate for interstellar communications
Lasers are another candidate for interstellar communications

Neutrinos, for example, would be an ideal communication medium. Sixty-five billion neutrinos emitted by the Sun pass through every square centimeter of the Earth every second and hardly any of them are stopped by the mass of the planet. If we could generate and detect them easily, they would provide us with a transmitter of unlimited range that would be almost impossible to block.

Going even farther afield, we could turn the Sun into a giant beacon by changing its spectrum directly by dumping about 400 tons of some man-made element into a heliocentric orbit. If someone light years away looked at the solar spectrum and saw something like technetium present (an element not found in nature), they’d certainly take notice. Alternatively, Philip Morrison once suggested placing opaque clouds in orbit around the Sun in a pattern that would make it seem to blink or even spell out short messages.

Oddly, one thing we don’t have to worry about for the moment are inadvertent messages. While aliens aren’t watching I Love Lucy, they could still be able to see the radio spectrum of our planet, and until recently it would have seemed very odd. Due to analog TV broadcasts and military radars, for much of the 20th century the Earth had a temperature in the radio band of the spectrum of 300 K (27° C, 80° F). In the absence of those artificial transmissions, for that to be true the Earth’s black-body temperature would need to be 40 million degrees, which is about seven thousand times hotter than the surface of the Sun.

But during the past 20 years, television has switched over to digital, which requires much smaller bandwidths, and more efficient radars have been developed, so the Earth is currently dark. But don’t get too comfortable. As we start moving out into the Solar System, there will be significant deep space traffic being tracked and tight communication beams transmitted, so things will get noisy again over the next generation.

How to write a message

So, we have our transmitter, but what do we say? To avoid the first conversation between worlds descending into awkward small talk about the weather, we need to come up with a message that’s worth listening to. More importantly, it needs to be one the recipient will understand.

It also needs to be a message that will be recognized as a message. It has to be unambiguously artificial and distinctly different from natural sources. This isn’t as easy as it sounds. A regular, repeating pattern in a radio signal may seem like an obvious beacon being transmitted by intelligent life, but radio astronomers keep being caught out by natural phenomena.

The Allen Telescope Array was built as part of the SETI effort
The Allen Telescope Array was built as part of the SETI effort

For example, on November 28, 1967, Jocelyn Bell Burnell and Antony Hewish at the Mullard Radio Astronomy Observatory in Cambridge, England observed a sequence of pulses coming at intervals of 1.33 seconds from the same point in the sky. Though a number of explanations were put forward to explain it, the idea that it might be artificial was reasonable enough for the signal to be nicknamed LGM-1, for Little Green Men.

LGM-1 turned out to be the first pulsar to be discovered, and it highlighted a problem with interstellar communications. Just because something is repeating, regular, or forms an obvious pattern, doesn’t mean there’s an intelligence behind it. Nature is filled with such things and, as the saying goes, although rare things occur rarely, it is also true that rare things occur rarely.

Imagine, as one philosopher put it, that you’re on a train from London to Cardiff. As you look out the window, you see a scattering of white stones in a field on a hillside. Is this an intelligent message? No. Stones show up in places all the time. But what if the stones form a pattern, like a series of lines or a triangle? It might be a message, but there are any number of processes that might arrange stones in an orderly manner that don’t require human intervention.

Now imagine that the stones spell out “Welcome to Wales.” Is this a message? This is much more likely because stones don’t generally form words or phrases, but it’s not outside the realms of possibility that it’s some remarkable coincidence or that we’re imposing our assumptions on what we see.

But what is the stones spell out “Welcome to Wales” and the hillside is just inside the Welsh border? Now the stones aren’t just forming a pattern, they’re expressing an actual true fact that we’re able to identify. It is a message and the probability of it being otherwise is infinitesimal.

Neptune as seen by Voyager 2
Neptune as seen by Voyager 2

So, if we are sending a message by radio, it has to be clearly artificial and it proves this by conveying verifiable facts that the recipient can recognize and understand. The problem is that this assumes some common frame of reference. If it hadn’t been for the Rosetta Stone repeating the same message in both Greek and Egyptian, hieroglyphics would still be as impenetrable today as they were three hundred years ago.

We need a similar Rosetta Stone and since there aren’t any monuments written in both English and Betelgeusian, we need something that is truly universal – science and mathematics.

Our cosmic message must be simple, but it must also show intelligence, so it can’t be just a repeating series of radio pulses. Instead, these pulses can be used to form binary code to convey data. It might be a series of binary numbers equivalent to 1,2,3,5,7,11 for the first prime numbers, or 1,4,9,16,25 for the first squares, or 3,1,4,1,5,9 for pi, or any of a number of other things.

This would certainly tell ET that we’re here and we’re intelligent, but our message can’t just be a string of simple numbers or it will go down as the most frustrating communication of all time. Our message has to be long. Much, much longer than these simple sequences meant as just a way to get attention. The first part might last only a couple of hours or days. The rest of the message would carry on for months.

Basically, what we’re doing is an exercise in anti-cryptology. Where a cryptographer comes up with ways to make a message harder to read or even find, we’re making one that’s as easy as possible to read, yet will still hold the reader’s attention by actually saying something worthwhile.

We could do this by splitting up the message into three types with each type alternating with the other two. To make sure we’re making up for data lost through interference or to take into account those who started listening in the middle of the message, everything would be repeated several times and perhaps on several neighboring frequencies.

The first type is made up of numbers, physical constants, arithmetic, mathematical concepts, formulae, common scientific facts, and a vocabulary. The second type would be language lessons including syntax, grammar, ideas, logic, sentences, paragraphs, and abstract concepts. Of course, this wouldn’t be in English, but more of a kind of binary Pidgin that would be intelligible to both parties.

The third type would be what we actually want to say and we’d only be limited by bandwidth and our own perseverance. We could send a very focused message, the complete sum of human knowledge in a giant encyclopedia, or we could, as the astronomer Fred Hoyle once suggested, send them instructions on how to build a computer and a copy of the software to program it with, creating a kind of electronic ambassador.

The first message

What we’ve discussed so far is what we could do if we wanted to get into some serious interstellar messaging, but it isn’t theoretical or a someday thing. In fact, Earth started sending messages into space almost half a century ago.

The first radio message to be beamed at the stars went out on November 16, 1974 using the 1,000-ft (305-m) dish antenna at the Arecibo Observatory in Puerto Rico as part of a ceremony to inaugurate a major upgrade. That day, under the eye of then-director Frank Drake, at 17:00 GMT the great dish was aimed at Messier 13 (M13) in the constellation of Hercules.

M13 is a globular cluster made up of 300,000 densely packed stars about 25,000 light-years from Earth, but it’s still within range of Arecibo, which is sensitive enough to detect a television station at a range of 1.8 light-years, BMEWS radar at 18 light-years, or its duplicate on the other side of the galaxy.

Carl Sagan was involved in the Arecibo Message, the Pioneer plaque, and the Voyager record
Carl Sagan was involved in the Arecibo Message, the Pioneer plaque, and the Voyager record

Set to 2,388 MHz, the signal shot out in a tight beam with 2 x 1013 watts behind it for two minutes and 49 seconds as 1,679 frequency pulses or bits modulated between two different frequencies to create binary code at 10 bits per second.

Unsurprisingly, 1,679 was not a number pulled out of a hat. It was very carefully chosen by Drake, who wrote the message itself before sending it to his colleague Carl Sagan to see if he could decipher it. One thousand six hundred and seventy-nine is the product of two prime numbers, 73 and 23. This is a vital clue to anyone or anything that intercepts the Arecibo Message, as it’s now known, which we’ve reproduced here.

The Arecibo Message with color added
The Arecibo Message with color added

Being the product of two prime numbers tells the recipient to set the binary numbers into a square 73 bits on one side and 23 bits on the other. There are only two ways to do this. One produces nothing but gibberish. The other forms a very low-resolution image, which is very clear if the binary ones and zeros are replaced with dark and light squares.

The Arecibo message is short, but it includes a lot of information about humans and the Solar System. The top section (colored here in white for clarity, though there is no color in the message) are the numbers one to 10 in binary with a “least significant digit” marker to show where the number begins. Below this, in purple, are the atomic numbers for hydrogen, carbon, nitrogen, oxygen, and phosphorus, which are the basic constituents of DNA.

In the next section, in green, are the formulae for the sugars and bases that make the nucleotides of DNA. These are in the form of sequences of the five elements previously described. Below this are a pair of spirals, in blue, representing the structure of DNA and a center bar, in white, that is the number 4.3 billion in binary, which is the number of nucleotides thought to make up human DNA in the 1970s.

The next section is a bit more obvious, with a stick figure, in red, in the center. Next to it is a bar, in blue, with the height of the average man represented in binary as 14 times the wavelength of the message (126 mm times 14 equals 1.7 m (5.8 ft). On the other side is the size of the human population in 1974 (4.3 billion)

Next, in the yellow, is a chart of the Solar System with a rough representation of each planet’s size. The symbol for Earth, which sits directly under the stick figure and is indented towards it to show a connection.

Finally, at the bottom of the image, is the outline of the Arecibo telescope and the binary representation of its diameter as a multiple of the message wavelength.

Because the Arecibo Message was really a stunt to show off what the telescope could do, it may have been much shorter than the ideal message we outlined above, but it still tells any recipients a lot about us. It shows a common numbering system and implies that we use a decimal system. It also tells them that we are carbon-based lifeforms, that our genetic structure is based on DNA, and something of our biochemistry. The message also shows that we’re bipeds and our size tells them something about Earth’s gravity. In addition, they know something about the structure of the Solar System and the nature of our technology.

Are we better to remain silent?

Since Arecibo, there have been about 12 other attempts to send messages to other civilizations, though none have been very long or repeated too many times. Part of the reason there have been so few and such modest attempts has been partly insufficient radio telescope time, but also the firm opposition of most of the astronomical community to sending such messages at all.

Though the idea of communicating with extraterrestrials has grown in popularity with the public, the SETI field has faced increasing difficulties in getting funding after nearly 60 years of failure, to the point where many researchers regard SETI, while laudable, as a pseudoscience without a subject and without a testable hypothesis.

According to astronomer and science fiction author David Brin, the strenuous efforts of some SETI researchers to keep the organization from being identified with UFOs and little green men has “pushed away a field that was very kind to them — bona fide science fiction” and walled in their community, isolating them from mainstream science. This has made some SETI proponents very sensitive and frustrated, leading some to advocate going straight from listening to shouting out the existence of mankind to the Cosmos in hopes of spurring a reply.

Saturn was visited by the Pioneer and Voyager missions
Saturn was visited by the Pioneer and Voyager missions

The problem is that one never knows who is going to get the message. They could be one of Sir Arthur C Clarke’s godlike, totally altruistic beings; friendly, logical Vulcans; H G Wells’ ravening Martian hordes bent on conquest; or C S Lewis’s demonic creatures motivated by pure evil. It’s this uncertainty that makes most astronomers prefer that sending any message should wait until the matter has been thoroughly discussed at the very least.

The Physicist Stephen Hawking, in an interview with the Sunday Times, said that if the human race is anything to go by, it would be better to remain silent.

“We only have to look at ourselves to see how intelligent life might develop into something we wouldn’t want to meet,” says Hawking. “I imagine they might exist in massive ships, having used up all the resources from their home planet. Such advanced aliens would perhaps become nomads, looking to conquer and colonize whatever planets they can reach.”

Even early studies of the 1960s and ’70s said that one of the top three criteria for a civilization becoming an active transmitting one was having the technology and resources to fend off an alien invasion force or other military threats.

Probe ambassadors

So does this mean that caution dictates that we never try to communicate with another civilization? Not necessarily. There is an alternative – one that we’ve already used to send messages to the stars. It’s slower than radio, but potentially much safer. This surprising competitor was actually the very first to carry a message addressed to some unknown extraterrestrial civilization years before Arecibo. The first will take tens of thousands of years to reach even the distance of the nearest star, if they ever do. Yet in this cosmic tortoise vs. hare race, it has some surprising advantages.

On March 3, 1972, Pioneer 10 lifted off from Cape Canaveral, Florida. Along with Pioneer 11, launched 11 months later, these unmanned deep space probes were tasked with making flybys of Jupiter and Saturn, setting them on a hyperbolic slingshot trajectory that made them the first spacecraft to ever set out from the Solar System, never to return.

Artist's concept of Pioneer 10
Artist’s concept of Pioneer 10

Not wanting to pass up the opportunity to create the most audacious messages in a bottle ever tossed into infinity, NASA turned the Pioneer probes into Earth’s first cosmic emissaries by tacking a gold-anodized aluminum plaque to each one. Measuring 9 x 6 in (229 by 152 mm), these plaques were engraved with a pictogram that may one day become the most important postcard in history, if by some miracle it’s ever found.

First suggested by journalist Eric Burgess and designed and constructed in three weeks by Carl Sagan, his then-wife Linda Salzman Sagan, and Frank Drake, the plaque is the icing on the cake for Pioneer. Since the aliens will already have the inert probe to study at their leisure, the plaque’s job is to provide a bit of context as to where this mysterious spacecraft came from and who sent it.

The Pioneer plaque
The Pioneer plaque

The plaque shows the outline of the Pioneer probe, in front of which stand the nude figures of a man and a woman. The man’s hand is raised in a gesture of greeting, while the woman has one foot set slightly forward to give some idea of how humans move. Below them is a representation of the Solar System with an arrowed line showing that the Pioneer came from the third planet from the Sun. To one side is a strange diagram of spreading lines with binary symbols next to each one, while above this is a figure of two circles separated by a line.

The two humans are probably the most difficult figures to decipher, since we have no idea how much of how we see two dimensional representations is universal and how much is peculiar to us. But the rest of the plaque should give the finders the ability to deduce some basic information about us.

The two circles at the top are a schematic of the “hyperfine transition” of neutral atomic hydrogen. That is, when the spin of the electron and the proton in a hydrogen atom align shift to when they are opposed, which is when the atom emits radio waves at 1,420 MHz. Since hydrogen is universal, this fact should also be universally known.

Diagram of the Pioneer plaque
Diagram of the Pioneer plaque

The clever bit is that 1,420 Mhz is a wavelength of 21 cm and that gives us and the aliens a common yardstick. Underneath the line connecting the two circles is the number one in binary code. Next to the two humans is the number eight in binary, which tells the aliens that humans are 8 x 21 cm tall – a figure that is confirmed by comparing them to the height of the spacecraft drawn behind them. Since the aliens should have the probe as well as the plaque, this allows them to double check their deductions.

The Solar System diagram also includes binary numbers under each planet showing their distance from the Sun.

As to the enigmatic spider next to the humans, this is a map showing the relationship between 14 pulsars identified by binary representations of their periods, with a 15th line showing the distance between Earth and the center of the galaxy. Since the periods of pulsars are precisely measured and their rate of slowdown is also known, the aliens should be able to pinpoint the date of the probe’s launch to within 100 to 1,000 years and our position to within 60 light years. Not exactly a GPS fix, but at least it would get them close enough to find a gas station and ask for directions.

The Pioneer plaque bolted to one of the Pioneer probes
The Pioneer plaque bolted to one of the Pioneer probes

“The Pioneer plaques are destined to be the longest-lived works of mankind,” said Sagan and Drake in 1975. “They will survive virtually unchanged for hundreds of millions, perhaps billions, of years in space. When plate tectonics has completely rearranged the continents, when all the present landforms on the earth have been ground down, when civilization has been profoundly transformed and when human beings may have evolved into some other type of organism, these plaques will still exist. They will show that in the year we called 1973 there were organisms, portrayed on the plaques, that cared enough about their place in the hierarchy of all intelligent beings to share knowledge about themselves with others.”

The Pioneer message is in some ways as simple as the later Arecibo Message, but in other ways is more complex. It has only a few sections intended to convey a few pieces of information, but the resolution is higher than what could be included in a radio message and the pulsar map goes a step further by telling the recipients where and when the probe came from.

Pioneer and Voyager trajectories
Pioneer and Voyager trajectories


In August 1977, the next level of SETI messaging went into space with the first of the two Voyager probes. Voyager 1 and 2 were larger and more versatile spacecraft tasked with a more ambitious mission. Their trajectory not only sent them to Jupiter and Saturn, but also to Uranus and Neptune, then set them on a velocity that is sending them out of the Solar System before their predecessors.

Even 40 years later, the two spacecraft are still partially functional and will continue to operate until the nuclear power system runs out sometime between 2025 and 2030. But even after their electronics go cold, the Voyagers will still have a job as carriers of the most ambitious space message sent so far.

Voyager showing the Golden Record
Voyager showing the Golden Record

Mounted on the fuselage of each Voyager’s main section is the Golden Record. It’s actually a 12-in (30-cm) copper gramophone record plated in gold and sealed in a gold-electroplated aluminum cover. The latter includes an ultra-pure sample of radioactive Uranium 238, which has a half life of 4.468 billion years and provides the finder with an accurate way to calculate how much time has elapsed since Voyager left Earth. To back this up, the cover is etched with the same pulsar map found on Pioneer. Like any user-friendly product, the cover includes an operating manual showing how to use the record as well as a phonograph needle to play it.

Where Pioneer was a simple message, the Voyager record is a flat-out information dump selected for NASA by a committee led by Carl Sagan. Along with lessons in number system, units of measurements, and biochemistry, the record contains 115 images, greetings in various languages, sounds of everyday Earth life, and 90 minutes of music from around the world.

The images are stored using a simple analog technique developed in the 1920s as a way of recording television on audio records. Since television is a made up of a series of still images, this turned out to be an excellent way to store relatively high definition images. The first image is a simple circle that acts as a calibration aid for the finder.

Cover for the Golden Record
Cover for the Golden Record

This is followed by a solar location map; mathematical and physical unit definitions; a tutorial in human biochemistry, anatomy, and reproduction; information about the planet Earth and its structure; images of terrestrial geology, climatic regions, animal life, and plant life. There’s also a large compendium on human life, activities, architecture, eating, technology, and music, as well as printed messages from US President James Carter and UN Secretary General Kurt Waldheim.

It will be a good 40,000 years before any of these probes comes within two light years of any other star systems and odds are that none will be found for millions or even billions of years.

AI ambassadors

But what does this slowpoke approach for sending messages have over light-speed radio signals? Not much at the moment, but while we’re at the physical limits of what radio can do, interstellar travel still has a long way to go. At the moment, we’re limited to using primitive chemical rockets or ion drives that aren’t really suited to the task of jumping between the stars, but that could well change one day, if we’re patient enough.

First contact with extraterrestrial civilizations has long fascinated scientists, philosophers, and writers
First contact with extraterrestrial civilizations has long fascinated scientists, philosophers, and writers

In 1964, Soviet astronomer Nikolai Kardashev came up with a way of classifying civilizations based on how much energy they are able to harness. A Type I civilization is limited to the power available on a single planet – about 4 X 1012 joules. A Type II would be able to use the output of an entire star, which comes out to 4 X 1026 joules. Meanwhile, a Type III civilization would have the output of a galaxy at 4 X 1037 joules.

The more power a civilization has at its disposal, the more efficient it becomes. One interesting point that SETI scientists have found is that when a culture reaches the point beyond a Type I civilization, the difference in efficiency between sending radio messages and sending unmanned probes becomes negligible.

In 1960, Ronald N Bracewell of Stanford University put forward a proposal for using robotic probes rather than sending radio messages as our way of opening contact with other beings. Let’s look an updated version of his idea.

Imagine it’s a few centuries from now when the energy problems of today seem as quaint as a flint or deer antler shortage in Neolithic Britain. Humanity now has so much surplus energy at its command that sending an interstellar probe seems no more farfetched than sending a probe to Pluto does in our day.

But these are far more advanced spacecraft than any we have today. They are larger and more powerful. They are self-refueling, self-repairing, and can even duplicate themselves as required using advanced 3D printing techniques. They are also fully autonomous with computers that have an almost organic level of artificial intelligence.

These probes aren’t very fast, reaching only 10 percent of the speed of light, but they don’t have to be. With no passengers or crew, they can afford to spend a few decades or even centuries getting to their destination. As they approach the candidate star selected by mission control, each probe has the ability to study the system in detail, identify the planets most likely to possess intelligent life, and make an assessment of whether to proceed or carry on to a more promising system.

If a planet does turn out to have a civilization advanced enough to make contact with, the probe would be programmed to discretely stand off and listen to radio, television, and data transmissions. Unlike trying to pick up signals from light years away, the probe could do so from only millions of miles or might even send in scouts to orbit the planet for a closer look and listen.

The Golden Record
The Golden Record

Already the advantages of sending out such a system become obvious. The Bracewell probe would be intelligent enough and programmed with enough precautionary algorithms to determine if the civilization in question is safe to contact or whether it could be more in Earth’s interests to stay silent. It could even remain on station for decades or even centuries as it sends back reports to Earth.

The same watching brief might even apply if it finds a civilization that hasn’t reached a high enough level of technology to communicate with. It could patiently wait and watch as it evolves, then decide whether to communicate as soon as it starts receiving radio transmissions. Or it could leave behind an artifact, as in 2001: a Space Odyssey, that would inform Earth if it was ever disturbed, while the probe itself moves on to more productive targets. Or it might duplicate itself and send the new one on.

If the probe did decide to make contact, it would be in a far better position than someone trying to start a conversation across 100 light years of space. For one thing, the probe would have no trouble making its presence known by blasting a powerful signal at the planet, perhaps re-broadcasting television programs with a six hour delay on the same frequency as the original broadcasts to make clear that this isn’t some kind of an echo.

The Voyager golden record and a US flag that also flew on the missions
The Voyager golden record and a US flag that also flew on the missions

When contact is established, communications would be clear with a minimum of interference and responses would be received in real time. In addition, a probe orbiting the planet would have huge bandwidth at its disposal to send and receive a very large amount of data – much of it in the form of video.

It would also be a simple task for the probe to instruct the natives on how to build compatible transceivers for the most efficient exchanges or to speak directly to Earth. On the other hand, the probe could act as a gatekeeper by relaying messages to Earth and censoring information, like our location, if the indigenes prove untrustworthy.

Because the probe has artificial intelligence, it can adapt its communications to suit the recipient. It could indulge in true conversations with the natives, asking questions and being asked questions in turn as an exercise in both teaching and learning. It could even provide language lessons with suitable feedback. It might even be able to connect directly to the planet’s version of the internet and use deep learning to better understand the culture or even to communicate directly with individuals.

Indeed, these exchanges could make such a probe, in the broad sense, profitable. Instead of blasting energy into space from Earth with no known return on the investment, the probe could send its findings to Earth much more economically. In fact, unlike radio signals, an autonomous probe program would continue operate long after it had been abandoned back on Earth.

It might even act as an insurance policy for our civilization. If Earth is destroyed, then at least our culture might live on – if only as a record, albeit an intelligent record. Or the probe could be programmed with a wide sampling of the human genome and supplied with information on how to construct a biological printer that would allow it to build human cells and clone them. Scientists are already doing this with simple viruses, so it may one day be possible with Homo sapiens. It may even be possible to bioengineer the ova at code level to adapt the colonists to their new environment.

Taking things a step further, there’s no reason why the probe must be mechanical. Today, scientists are able to encode images and even videos on bacterial DNA. Perhaps, in time, some sort of microorganism could be developed with complex messages encoded on it as a form of self-replicating courier placed in small probes or turned into spores and carried on the solar winds into the galaxy. Maybe one day our first message won’t be heard over the radio, but seen through a microscope.

The completed Golden Records
The completed Golden Records

Today, we have a lot more experience beaming messages into deep space as our unmanned missions probe the edges of the Solar System and beyond. We know more about how to send and receive data with a minimum of wattage, how to use tight-beam radio, and how to carry out precise tracking of space objects. We’re even experimenting with laser communications in deep space and looking at new ways to send spacecraft to the nearest stars.

But whatever methods we may adopt in the future, our first messages are already on their way and we’re waiting for the reply. The odds are long, however, and we won’t hear much for about 50,000 years, so there’s time to put the kettle on.

There Are at Least 36 Intelligent Alien Civilizations in Our Galaxy, Scientists Claim!

#Space #UFO #Alien #DrakeEquasion #Galaxy #Extraterrestrial

Humans have long suspected that we are not alone in the universe, and now scientists have said there may be dozens of alien civilizations lurking not too far from Earth. Some of them may even be advanced enough to communicate with us.

Listen to this article

According to a new study in The Astrophysical Journal, scientists at the University of Nottingham estimate that there is a minimum of 36 communicating intelligent alien civilizations in the Milky Way galaxy. 

They say the estimate is actually conservative — it’s based on the assumption that intelligent life forms on other planets in a similar way to how it does on Earth, using what they call the Astrobiological Copernican Limit.The researchers assume that Earth is not special — if an Earth-like planet forms in an Earth-like orbit around a Sun-like star, hosting a civilization that develops technologically in a similar way to humans, there would be approximately 36 Earth-like civilizations in our galaxy. In this case, other technological civilizations would be sending out signals, such as radio transmissions from satellites and televisions, on a similar timeline as humans, also attempting to find other lifeforms. 

“There should be at least a few dozen active civilizations in our galaxy under the assumption that it takes 5 billion years for intelligent life to form on other planets, as on Earth,” lead researcher Christopher Conselice said in a news release. “The idea is looking at evolution, but on a cosmic scale.”

Previous calculations of alien life have been based on the Drake equation, which includes seven factors needed to find the number of intelligent civilizations, written by astronomer and astrophysicist Frank Drake in 1961. The estimates have been extremely broad, ranging from zero to a few billion civilizations. 

The team of researchers in Nottingham refined the equation using new data and assumptions. They found that there are likely between four and 211 civilizations capable of communicating with others, with 36 the most likely number. 

Finding these civilizations is another issue entirely — scientists said they would be thousands of light years away. Our current technology makes it nearly impossible to detect or communicate with possible alien life.

Scientists said that searching for extraterrestrial intelligent life could give us insight into how long our own civilization can survive. The more civilizations we find close to home, the better the chances for humans’ long-term survival. 

“If we find that intelligent life is common then this would reveal that our civilization could exist for much longer than a few hundred years, alternatively if we find that there are no active civilizations in our galaxy it is a bad sign for our own long-term existence,” Conselice said. “By searching for extraterrestrial intelligent life — even if we find nothing — we are discovering our own future and fate.”

Something’s Blinking on the Moon but Nobody Knows What

#space #Moon #Blink #Mystery #TLP

Why Does the Moon Keep Flashing Us?

The moon

The moon has been flashing us, and a new telescope might explain why. (Image credit: Julius-Maximilians-Universität Würzburg)

Listen to this article

There’s something flashing us on the moon, and we don’t know what it is. But that might be about to change.

We have known about the mysterious flashes since at least the late 1960s, when the astronomers Barbara Middlehurst and Patrick Moore reviewed the scientific literature and found nearly 400 reports of strange events on the moon. Small regions of the lunar surface would get suddenly brighter or darker, without obvious explanation. The scientists’ survey of the flashes and dimming, which they called “lunar transient phenomena,” was published in the journal Science on Jan. 27, 1967. (Later, astronomers flipped the words around, terming the events “transient lunar phenomena.”)

“The emitted light is usually described as reddish or pinkish, sometimes with a ‘sparkling’ or ‘flowing’ appearance,” wrote the astronomer A. A. Mills in the March 1970 journal Nature.. “The coloration may extend for a distance of 10 miles [16 kilometers] or more on the lunar surface, with brighter spots 2 to 3 miles [3 to 5 km] across, and is commonly associated with veiling of the surface features. The average duration of an event is some 20 minutes, but it may persist intermittently for a few hours.”

Amateur astronomers can sometimes spot the flashes with the help of a decent telescope, though the flashes are unpredictable and finding one can involve hours or days of waiting.

Mills noted, bafflingly, that the events leave no obvious marks on the lunar surface after they pass.

Scientists have returned to the subject periodically in the five decades since, but without turning up conclusive explanations. These events are now known to happen a few times a week. This year, a new team of astronomers has returned to the question with an observaotry specially designed for the task.

The new instrument observes the moon constantly using two cameras located 60 miles (100 km) north of Seville in Spain. When both cameras spot a flash, according to a statement from the telescope’s designers, they record detailed photos and videos of the events, and send an email to Julius-Maximilians-Universität Würzburg (JMU) in Bavaria, Germany, which runs the telescopes.

The telescope sits in one of these chambers at an observatory in Spain. (Image credit: Hakan Kayal)

The observatory is still under development, according to the statement, with ongoing improvements to its software since it went online in April. Still, researchers have their suspicions as to what it will discover.

“Seismic activities were also observed on the moon. When the surface moves, gases that reflect sunlight could escape from the interior of the moon,” Hakan Kayal, a researcher at JMU and head of the telescope project, said in the statement. “This would explain the luminous phenomena, some of which last for hours.” Kayal said that, given current plans to establish a base on the moon, it’s important to know just what’s going on up there, so folks living at the base can be prepared for their environment.

But even if that base never happens, it would be nice to know why the moon keeps flashing us.

The moon doesn’t lose a lot of staring contests.

But every now and then, Earthlings who train telescopes on the natural satellite get a a real eye-opener: the moon blinks back at them.

A light, often red or pink, may suddenly flash from the darkness. It lasts a mere second. Other times, the seemingly random twinklings go on for hours.

Is it Morse code? Is someone stranded up there? What are you trying to tell us, Man on the Moon?

Scientists have a name for the effect — transient lunar phenomenon, or simply,TLP. But they don’t know much else. Despite flashing moon lights being recorded for decades, scientists remain as baffled as ever about their origin.

A map showing TLP activity on the moon.
A map showing reported sites of TLP, with red dots signifying reddish clouds and all other events represented by yellow dots. Wikipedia

Is there a method to those pulses of light, often emanating from several points of the moon at once? Theories range from meteorites pelting the moon to gasses being vented from deep beneath the surface.

But astronomer Hakan Kayal may have solved this riddle once and for all by literally connecting the dots.

Moon Telescope

Kayal, a professor at Germany’s University of Würzburg, built a moon telescope, deploying it in Spain earlier this year. From its rural base north of Seville, the telescope is mostly free from meddling light pollution, allowing its unflinching eye to remain fixed on the moon.

Make that two eyes. The telescope incorporates dual cameras, each remotely operated from the university campus in Bavaria. When those cameras detect a burst of light, they automatically start recording images, while sending an email to the German research team: The moon is doing that thing again.

But the real sleuthing will be done by software. Kayal’s team is still honing an AI system that will be able to zero in on flashes of light that originate strictly from the moon.

That’s no small task considering the dizzying number of distractions in the night sky — including counterfeit constellations like Elon Musk’s Starlink satellite network.

Scientist Hakan Kayal poses with his lunar telescope.
Hakan Kayal pictured here with the the fully automatic lunar telescope he built. Tobias Greiner/University of Würzburg

But once the lunar telescope’s AI is trained to tune out distractions — it’s expected to be ready in about a year — Kayal says it will be fully tuned into TLP, recording the moon’s every twinkling outburst.

Software Improvements Needed

“One main task for us is to further develop our software for the detection of the events with as low false alarm rates as possible,” Kayal tells Popular Science. “We already have a basic version which works but there are improvements necessary. As the project is not third party-funded yet and only funded by the resources of the university itself, there is not very much manpower for the software. But we have students who can help to improve the software within their study.”

Once those dots are connected, scientists may, for the first time, be able to analyze patterns and come up with a credible theory for that baffling lunar light show.

For now, Kayal has one of his own:

“Seismic activities were also observed on the moon,” he suggests in a press release. “When the surface moves, gases that reflect sunlight could escape from the interior of the moon. This would explain the luminous phenomena, some of which last for hours.”

Alien Technosignature? The Mysterious Star VVV-WIT-08

#Space #Astronomy #VVV-WIT-08 #Unknown #Star #Technosigniture #Megastructure

VVV-WIT-08, Giant Blinking Star, Spotted by Astronomers Near Milky Way

An international team of astronomers has spotted a giant ‘blinking’ star towards the centre of the Milky Way, more than 25,000 light years away. The star, VVV-WIT-08, decreased in brightness by a factor of 30, so that it nearly disappeared from the sky.

Listen to this article

London, June 11: An international team of astronomers has spotted a giant ‘blinking’ star towards the centre of the Milky Way, more than 25,000 light years away. The star, VVV-WIT-08, decreased in brightness by a factor of 30, so that it nearly disappeared from the sky. While many stars change in brightness because they pulsate or are eclipsed by another star in a binary system, it is exceptionally rare for a star to become fainter over a period of several months and then brighten again, the team said.

The researchers believe that VVV-WIT-08 may belong to a new class of “blinking giant” binary star system, where a giant star 100 times larger than the Sun is eclipsed once every few decades by an as-yet unseen orbital companion. 

The companion, which may be another star or a planet, is surrounded by an opaque disc, which covers the giant star, causing it to disappear and reappear in the sky. The study is published in Monthly Notices of the Royal Astronomical Society.

“It’s amazing that we just observed a dark, large and elongated object pass between us and the distant star and we can only speculate what its origin is,” said Sergey Koposov from the University of Edinburgh.

Since the star is located in a dense region of the Milky Way, the researchers considered whether some unknown dark object could have simply drifted in front of the giant star by chance. However, simulations showed that there would have to be an implausibly large number of dark bodies floating around the galaxy for this scenario to be likely.

One other star system of this sort has been known for a long time. The giant star Epsilon Aurigae is partly eclipsed by a huge disc of dust every 27 years, but only dims by about 50 per cent. A second example, TYC 2505-672-1, was found a few years ago, and holds the current record for the eclipsing binary star system with the longest orbital period — 69 years — a record for which VVV-WIT-08 is currently a contender.

The UK-based team has also found two more of these peculiar giant stars in addition to VVV-WIT-08, suggesting that these may be a new class of “blinking giant” stars for astronomers to investigate. There now appear to be around half a dozen potential known star systems of this type, containing giant stars and large opaque discs.

When UFOs Attack – Documented Cases of Hostile Alien Encounters

#UFO #UAP #Alien #hostile #unknown

If there is one misguided theme I have heard repeated many times in and outside of the UFO community, it is the notion that UFOs and extraterrestrials are our benevolent technological and spiritual superiors, who are only trying to watch over us and gently guide human kind from a path of nuclear, biological and ecological self-destruction to an interstellar highway of spiritual enlightenment and prosperity.

This mantra has been repeated ad nauseum ever since the first UFO was sighted and close encounter was experienced. Yet, there is much documented evidence that these aliens, extraterrestrials or inter-dimensional interlopers may not always be benevolent. On the contrary, there is much more proof that these uninvited guests, who boldly penetrate our airspace, have at times kidnapped, injured and killed innocent humans and animals.

Thankfully, this wasn’t the case in the latest, solidly documented close-encounter case recorded in a recently released Pentagon UFO study. The usually mum Department of Defense almost appeared eager to report the Nov. 14, 2004 UFO incident, experienced by former Navy pilot David Fravor, who repeated a familiar story to all of us who have studied the history of Ufology the last 70 years. While flying a routine mission off an aircraft carrier he and other pilots spotted a UFO that made incredibly sharp turns and reached speeds impossible for aircraft using Earth’s technology. As he watched this mystery craft zip away at an extremely high speed, he came to the same conclusion many of his fellow, military pilots have come to: “It was not of this world,” Fravor told various news organizations. He added that no human could have possibly withstood the G force of such a tremendous thrust of sudden acceleration.

In this concise report, I will present to you documented evidence of a pilot unlike Fravor, who suffered harm in such a mysterious encounter. Such incidents are vastly under reported. For example, until I really started researching this subject, I never realized that a U.S. Army pilot became the first known casualty as a result of such UFO aggression. Although the Army denied this, and summarily covered up this horrifying event with no less than three different, ever- morphing cover stories, I will present you with documentation and eyewitness accounts from credible witnesses that prove within a reasonable doubt that on a January afternoon in 1948 hostile extraterrestrials committed an act of war against the United States. It was likely not the first – and certainly – will not be the last.

I will also present evidence that proves that the population of a small island was terrorized and its impoverished residents used as guinea pigs by an alleged flap of UFOs that harassed and injured scores of innocent men and women for a period of months. Some of these unfortunates still carry the scars from burns and wounds that were inflicted upon them by these unknown perpetrators. The proof consists of eyewitness accounts and secret documents that have been leaked out over several decades. Additionally, in this report, I will document numerous cases of aggressive and hostile UFO acts taken against both military and commercial pilots.

As a bonus, I have also included many little known UFO sighting reports from the early 1860’s to the present. Even though some of these are not directly hostile encounters, all of them invaded our airspace and in some cases crash landed, exposing humans to potential injury or death. Plus, I will present documentation of ongoing cattle mutilations that remain a dark mystery but point to either nefarious government and alien culprits — or a collaboration of both. In conclusion, I must warn you that some will not like this report. They will categorize my conclusions as alarmist and sensational. But as always, I leave it up to you the reader to decide.

When UFOs Attack — Documented Cases of Hostile Alien Encounters

Listen to this article

A recently-discovered declassified Australian report analyzes 1,000 UFO encounters of the third kind to understand the kinds of weapons being used against humans and their animals by these visitors — and if they are being used defensively or without provocation. The reports of UFO landing and near landings were complied by the renowned Ufologist and physicist Jacques Vallee, who worked with the late and honorable Professor Hynek. Hynek acted as scientific advisor to UFO studies undertaken by the U.S. Air Force under two projects: Project Sign and Project Blue Book.

3 Weapon Systems

After a thorough analysis of the 1,000 UFO cases from around the world, the report found the existence of three “weapon systems being used by these unidentified visitors:”

  1. a device to interfere with electrical circuits.
  2. a device to induce paralysis.
  3. a heat ray.

Visitors Use of Weapons
The report, which is dated January 1970, sums up the use of weapons by the alleged extraterrestrials against humans and animals in the following manner:

“There is circumstantial evidence that these weapons are at times used deliberately, although mostly in a defensive role. A number of reports allege that a lone car at night has been followed, and after being stopped by a beam, some kind of interaction has developed between the car occupants and the landed craft occupants.

Information is included which deals with residual effects on the environment of the landed craft. It is these residual effects which offer the greatest potential reward to scientific investigation at this stage.

Sampling of 1,000 Cases Analyzed

Here is a sampling of the 1,000 documented cases. As of this writing, the entire 12-page report, can still be read on the National Archives of Australia, but the PDF download feature is currently disabled.

Case #234 France: 3 small humanoids by craft 50 meters away. Small, reddish point of light. Both witnesses paralyzed until craft left. Ignition failure.

Case #249 France: Witness reach 20 meters from dish with 4-foot being in diving suit before being paralyzed. As craft took off, witness thrown to ground.

Case #272 France: Horse lifted [by]10 foot by 5 foot diameter object and was paralyzed 10 minutes. Man at side of horse felt nothing.

Case #279 France: Dog partially paralyzed when approached two helmeted figures near dome.

Case #295 Italy: 4-foot-3-inch being by tree aimed a flashlight beam, paralyzing witness. Action of clenching fist on keys freed him allowing him to attack the intruder who flew away with a soft whir on a conical device.

Case #339 Italy: 3 small humanoids stealing rabbits from cage. Farmer aims rifle which fails to fire and then has to be dropped.

Case #356 Venezuela: Witness came across 6 little men loading boulders into hovering dish. As he started to run away, one of the creatures pointed something at him which gave off a violet-colored light and paralyzed him.

Case #398 Argentina: Dish lands. Air Force man unable to draw gun from holster. Voice in Spanish from craft.

Case #400 Brazil: Man fell paralyzed. Companions see dish with dome top and bottom 50 meters away. Three 5-foot-7-inch men gather samples.7/11/2021 Declassified Australian Report Analyzes Weapons UFOs Use Against Humans – Unknown Boundaries

Case #333 France: Blue dish came close to motorcycle; prickling felt in hand, engine dies and unable to move of speak. They blue light turns off, all o.k.

Again, this is just a sampling, the entire report can be read here, as of this writing. * Sometimes such documents mysteriously disappear. I made jpeg copies, for myself, however, this is a labor-intensive method. But it’s better to be safe than sorry.

Here are copies of the documents I used for this post:

Physicist discovers the explosions that will end our universe

#space #physics #universe #supernova

A new study sheds light on the final supernovae of the Universe.

Physicist discovers the explosions that will end our universe
Listen to this article

The supernova remnant Cassiopeia A.Credit: NASA/JPL-Caltech/STScI/CXC/SAOA physicist calculated when and how the final explosions in our universe will take place.Matt Caplan of Illinois State University predicts black dwarfs will go supernova in the distant future.About a billion trillion stars will meet this end.

What will the end of the universe look like? A new study shows a series of black dwarf explosions might be the final coda in its story.

Matt Caplan, the theoretical physicist from Illinois State University who conducted the study, says the end-times universe will be “a bit of a sad, lonely, cold place.” Most scientists expect not much will be around to witness the proceedings of this “heat death” – just black holes and burned-out stars. But Caplan also sees something else happening then.

As the universe functions now, massive stars die in supernova explosions that follow an over-accumulation of iron in their cores. The smaller stars meet their demise by burning through all their nuclear fuel and turning into white dwarfs. Caplan’s research shows that as these space objects proceed to cool over trillions of years, they will dim completely, freeze into solids and become “black dwarfs.” These super dense stellar bodies will contain mostly elements like carbon and oxygen and will be the size of Earth while having as much mass as the sun.

Caplan thinks that even though these stars will be burned out, slow fusion reactions will still take place, producing iron, which will eventually lead to explosions. The scientist calculates just how long these black dwarfs have before their supernovas in a future world filled with “sparse degenerate remnants,” as he calls them in his paper.

The first of these final booms of our universe will take place about 10 ^1100th years from now. “In years, it’s like saying the word ‘trillion’ almost a hundred times,” explains Caplan, pointing out that “If you wrote it out, it would take up most of a page. It’s mindbogglingly far in the future.”

He doesn’t anticipate that all black dwarfs would end up exploding, just the most massive ones, with the mass of about 1.2 to 1.4 times the mass of the sun. That means about 1 percent of the of stars that exist today will meet this eventuality. That’s about a billion trillion stars, if you’re counting. The rest will stay as black dwarfs.

What is a Black Dwarf?

Caplan expects our sun won’t end up in a supernova either as it doesn’t have enough mass to explode.

When will all the final explosions stop, turning out universe into a dark, silent graveyard of cosmic shards? In about 10^32000 years.

“It’s hard to imagine anything coming after that, black dwarf supernova might be the last interesting thing to happen in the universe,” he shared. “They may be the last supernova ever.”

Detecting Alien Technosignatures

#Space #Astronomy #Alien #Technosigniture


Listen to this article

The truth is our there, if you know what you’re looking for…


honglouwawa/Getty Images

In the search for extraterrestrial intelligence (SETI), we can’t simply point our telescopes out to the cosmos and hope to stumble across an alien civilisation. We need to know exactly what we’re looking for. The good news is that just as astrobiologists have a catalogue of tell-tale signs of life on other planets called biosignatures, SETI researchers have their own list of things that would indicate the existence of intelligent life beyond Earth. These are known as “technosignatures”.

Radio signals

SETI began in earnest in 1960 with Project Ozma, when Frank Drake used the Green Bank Telescope in West Virginia to search for artificial radio signals around two stars. The idea was that any alien transmissions would be identifiable because, like ours, they would look different to natural sources of radio waves. Since then, most searches have focussed on radio signals. And although most sightings have proved red herrings, including the famous Wow! Signal, this strategy is still throwing up some of the most promising candidates.

Dyson spheres

Around the same time as astronomers began scouring stars for radio signals, the physicist Freeman Dyson suggested another potential technosignature. Dyson reasoned that to satisfy its ever-increasing energy needs, an advanced alien civilisation would build an enormous solar power plant around its host star. This would heat up and generate an infrared glow in excess of what you would expect from an unadorned star – a glow that we could see from Earth.

These hypothetical megastructures are now known as Dyson spheres. Searching for them remains a minority sport, but some researchers have recently begun to step up the hunt by figuring out how to distinguish a genuine Dyson sphere from a star shrouded in dust.


Any advanced extraterrestrial civilisation is likely to have transformed its host planet with industry. SETI researchers have proposed that we could look for their non-natural waste products such as chlorofluorocarbons (CFCs), which can persist in the atmosphere for tens of thousands of years. Astrophysicist Avi Loeb of Harvard University has also suggested light pollution on the night side of an extrasolar planet as a possible sign of technological civilizations.

Particle colliders

If intelligent aliens are, like us, curious about the fundamental forces of nature, they might have built a particle collider that makes our Large Hadron Collider look puny. An accelerator powered by a black hole, for instance, would produce super-high-energy neutrinos, particles that could be detected from Earth.


Any advanced civilisation runs the risk of destroying itself, and the fallout might be visible to distant observers. Nuclear bombs would release flashes of gamma rays, but they would be fleeting and the resulting dust would be hard to distinguish from that produced by an asteroid strike.

Evidence of Mysterious Free Floating Planets Alone in Deep Space

#Space #Planet #Astronomy #Kepler #Telescope

Tantalising evidence has been uncovered for a mysterious population of “free-floating” planets, planets that may be alone in deep space, unbound to any host star. The results include four new discoveries that are consistent with planets of similar masses to Earth, published today in Monthly Notices of the Royal Astronomical Society.

Listen to this article

The study, led by Iain McDonald of the University of Manchester, UK, (now based at the Open University, UK) used data obtained in 2016 during the K2 mission phase of NASA’s Kepler Space Telescope. During this two-month campaign, Kepler monitored a crowded field of millions of stars near the centre of our Galaxy every 30 minutes in order to find rare gravitational microlensing events.

The study team found 27 short-duration candidate microlensing signals that varied over timescales of between an hour and 10 days. Many of these had been previously seen in data obtained simultaneously from the ground. However, the four shortest events are new discoveries that are consistent with planets of similar masses to Earth.

These new events do not show an accompanying longer signal that might be expected from a host star, suggesting that these new events may be free-floating planets. Such planets may perhaps have originally formed around a host star before being ejected by the gravitational tug of other, heavier planets in the system.

Predicted by Albert Einstein 85 years ago as a consequence of his General Theory of Relativity, microlensing describes how the light from a background star can be temporarily magnified by the presence of other stars in the foreground. This produces a short burst in brightness that can last from hours to a few days. Roughly one out of every million stars in our Galaxy is visibly affected by microlensing at any given time, but only a few percent of these are expected to be caused by planets.

Kepler was not designed to find planets using microlensing, nor to study the extremely dense star fields of the inner Galaxy. This meant that new data reduction techniques had to be developed to look for signals within the Kepler dataset.

Iain notes: “These signals are extremely difficult to find. Our observations pointed an elderly, ailing telescope with blurred vision at one the most densely crowded parts of the sky, where there are already thousands of bright stars that vary in brightness, and thousands of asteroids that skim across our field. From that cacophony, we try to extract tiny, characteristic brightenings caused by planets, and we only have one chance to see a signal before it’s gone. It’s about as easy as looking for the single blink of a firefly in the middle of a motorway, using only a handheld phone.”

Co-author Eamonn Kerins of the University of Manchester also comments, “Kepler has achieved what it was never designed to do, in providing further tentative evidence for the existence of a population of Earth-mass, free-floating planets. Now it passes the baton on to other missions that will be designed to find such signals, signals so elusive that Einstein himself thought that they were unlikely ever to be observed. I am very excited that the upcoming ESA Euclid mission could also join this effort as an additional science activity to its main mission.”

Confirming the existence and nature of free-floating planets will be a major focus for upcoming missions such as the NASA Nancy Grace Roman Space Telescope, and possibly the ESA Euclid mission, both of which will be optimised to look for microlensing signals.

Did The U.S. Government Steal Tesla’s Research?

#Tesla #Freeenergy #science #mystery #NikolaTesla

Nikola Tesla was undoubtedly one of the brightest minds of the 20th century. Many of our modern day commodities owe their existence to his brilliant mind. However, he lived most of his life in a constant battle with the energy brokers of his day, namely Thomas Edison backed by General Electric.

On January 7, 1943, Tesla died alone and impoverished in room 3327 of the New Yorker Hotel. Two days after his death, the FBI ordered that all of his belongings be seized.

His lifetime work was confiscated by the Office of Alien Property even though he had been an American citizen for 52 years. It was known at the time that Tesla had been working on several important projects, including wireless communications and limitless free energy.

Listen to this article
Last photo of Nikola Tesla

Tesla’s plan was to harness energy from the radiation present in the universe, using the entire planet as a conductor. This would have meant that anybody could have free electricity simply by sticking a metal rod into the ground.

These notions did not go well with the power elite, whose interest was maintaining the status quo, that is keeping their multi-billion dollar businesses running.

After all, what good was free energy if they wouldn’t be able to meter and control it? Therefore, many speculate that the U.S. government acted according to the pressure exerted by these big corporations. They eventually shipped his estate to Belgrade, Yugoslavia but not before taking nine years to go through it.

This situation gave rise to a pervasive notion that is strongly supported by circumstantial evidence: Tesla’s research was considered critical, even dangerous and was confiscated for good measure.

His ideas could have constituted an important advancement for humanity and that’s exactly why they were withheld.

Nikola Tesla

It is believed that the technology behind HAARP is based on Tesla’s research. The U.S. has many top-secret compounds around the world and also has a history of secretly developing technology.

Perhaps this is why Tesla’s papers were seized but we might never know for sure.

After years of fielding questions about possible cover-ups, the FBI finally declassified some 250 pages of Tesla-related documents under the Freedom of Information Act in 2016. The bureau followed up with two additional releases, the latest in March 2018.

But even with the publication of these documents, many questions still remain unanswered—and some of Tesla’s files are still missing.

Shortly after an electrical engineer, Dr. John G. Trump (yes it is current President Donal Trump’s uncle) was assigned to review his papers to discover if any of it was of actual tangible value.

He determined that it was “primarily of a speculative, philosophical and promotional character” and said the papers did “not include new sound, workable principles or methods for realizing such results.”

Tesla’s extended family, including his nephew Sava Kosanovic, tried desperately to have at least his personal effects returned. Their requests were eventually accepted and some of his personal items were returned to the family.

Recently declassified documents reveal that the FBI, at the time, were concerned with his nephew’s intentions. They had even considered arresting him to prevent Tesla’s work falling into enemy hands.

After a long court battle, Kosanovic, the rightful heir to his uncle’s belongings, was finally given them. Tesla’s possessions and files were sent to Belgrade.

But, interestingly, of the 80 trunks or so of Tesla’s effects, only 60 arrived in Belgrade. Whether the U.S. Government had kept some of the information and effects or not is still, today, unknown.

It is also believed that Ronald Reagan’s “Star Wars” Strategic Defense Initiative program in the 1980s was probably inspired by Tesla’s “Death Ray”. But if the government is still using some of Tesla’s material for its Research and Development, this would explain why some, if any, of his original works, are still missing today.

The Mystery of the Alien Megastructure Star

#star #astronomy #alien #megastructure

Listen to this article

A new clue has just been found that could help solve the mystery of a weirdly dimming star. KIC 8462852, also known as Boyajian’s Star, seems to have a binary companion that could be contributing to its irregular dips in brightness.

If confirmed with more detailed observations, the newly discovered companion star could help astronomers finally solve KIC 8462852’s ongoing mystery.

The star was discovered in 2015 by astronomer Tabetha Boyajian (hence it was previously Tabby’s Star), and since then it has proven to be a real puzzle. It’s a yellow-white dwarf star around 1,470 light-years away, and it keeps dimming erratically. There is no regularity either to the timing of the star’s dimming, or the depth – some of the dips in starlight have been as deep as 22 percent.

This behaviour rules out planets; when an exoplanet passes between a star and Earth as it orbits, it will dim the star by a tiny amount – 1 percent or less – at regular intervals.

Furthermore, when Boyajian’s Star dims, some wavelengths are blocked more than others. That rules out a solid object (such as an alien megastructure, as proposed in 2016), which would block all wavelengths equally.

So far, the most likely explanation seems to be optically thin dust and debris, possibly from broken-up planetesimals or comets on eccentric orbits, in combination with normal brightness variations from the star itself.

The presence of a binary companion star on a wide orbit could help explain the presence of all this material, providing additional gravitational perturbations to disrupt orbiting bodies.

Since 2016, a team of astronomers led by Logan Pearce of the University of Arizona has been trying to confirm the potential connection of a nearby star to KIC 8462852. Their paper has now been accepted into The Astrophysical Journal.

The difficulty of measuring space in three dimensions is what’s made this work rather hard. Stars that look quite close together might actually be at wildly different distances from the viewer. So, Pearce and team used five years’ worth of observations to make precise astrometric measurements of the faint star that seemed close to KIC 8462852.

“In this work we use three epochs of Keck/NIRC2 astrometry spanning five years to revisit the status of the close companion to KIC 8462852, and show that they are a common proper motion pair and a gravitationally bound binary system,” they wrote in their paper.

In addition to the Keck Observatory observations, the 2020 release of astrometric data from the Gaia satellite – the most complete and precise three-dimensional map of the Milky Way to date – also included the faint star, with measurements in agreement with the team’s findings.

The two stars are separated by a distance of 880 astronomical units. Boyajian’s Star, or KIC 8462852 A, is the bigger star, at around 1.36 times the mass and 1.5 times the size of the Sun. The companion, KIC 8462852 B, is a red dwarf star around 0.44 times the mass and 0.45 times the size of the Sun.

At such a wide orbit, KIC 8462852 B would be unlikely to have any direct effect on the brightness of KIC 8462852 A. But it could still play a role in the larger star’s mystery fluctuations, the researchers said.

“The binary companion may influence the long-term evolution of the system,” they wrote in their paper.

Scientists have previously found that widely spaced stellar binaries can be pushed by larger gravitational forces to move in very close to their mutual centre of mass multiple times over the course of around 10 billion years.

In turn, this could result in the disruption of planets and other small orbiting bodies where they’re stretched and torn apart by gravitational interactions, resulting in clouds of debris.

The scenario is yet to be confirmed. At such a wide separation, the two stars would have an extremely long orbit, and the observations taken were not sufficient to characterise this orbit. KIC 8462852 B could be a star that was ejected from the system; or the two stars could be members of a co-moving group.

The researchers believe that a binary is the most likely explanation for their measurements of the two stars, but future measurements of the pair will be needed to better understand their relationship. This could help confirm or rule out KIC 8462852 B’s role in the star’s erratic brightness.

But for all the mystery lovers out there, never fear. There are other weirdly dimming stars out there, including a star for which the binary companion has already been accounted for, and a tantalising collection of 21 stars that could be even weirder.

The team’s research has been accepted into The Astrophysical Journal, and is available on arXiv.

The Quantum Experiment that Broke Reality

Do atoms going through a double slit ‘know’ if they are being observed?

Listen to this article

#physics #quantum #reality #atoms

Does a massive quantum particle – such as an atom – in a double-slit experiment behave differently depending on when it is observed? John Wheeler’s famous “delayed choice” Gedankenexperiment asked this question in 1978, and the answer has now been experimentally realized with massive particles for the first time. The result demonstrates that it does not make sense to decide whether a massive particle can be described by its wave or particle behaviour until a measurement has been made. The techniques used could have practical applications for future physics research, and perhaps for information theory.

In the famous double-slit experiment, single particles, such as photons, pass one at a time through a screen containing two slits. If either path is monitored, a photon seemingly passes through one slit or the other, and no interference will be seen. Conversely, if neither is checked, a photon will appear to have passed through both slits simultaneously before interfering with itself, acting like a wave. In 1978 American theoretical physicist John Wheeler proposed a series of thought experiments wherein he wondered whether a particle apparently going through a slit could be considered to have a well-defined trajectory, in which it passes through one slit or both. In the experiments, the decision to observe the photons is made only after they have been emitted, thereby testing the possible effects of the observer.

For example, what happens if the decision to open or close one of the slits is made after the particle has committed to pass through one slit or both? If an interference pattern is still seen when the second slit is opened, this would force us either to conclude that our decision to measure the particle’s path affects its past decision about which path to take, or to abandon the classical concept that a particle’s position is defined independent of our measurement.

Photon first

While Wheeler conceived of this purely as a thought experiment, experimental advances allowed Alain Aspect and colleagues at the Institut d’Optique, Ecole Normale Supérieure de Cachan and the National Centre for Scientific Research, all in France, to actually perform it in 2007 with single photons, using beamsplitters in place of the slits envisage by Wheeler. By inserting or removing a second beamsplitter randomly, the researchers could either recombine the two paths or leave them separate, making it impossible for an observer to know which path a photon had taken. They showed that if the second beamsplitter was inserted, even after the photon would have passed the first, an interference pattern was created.

The wave–particle duality of quantum mechanics dictates that all quantum objects, massive or otherwise, can behave as either waves or particles. Now, Andrew Truscott and colleagues at Australian National University carried out Wheeler’s experiment using atoms deflected by laser pulses in place of photons deflected by mirrors and beamsplitters. The helium atoms, released one by one from an optical dipole trap, fell under gravity until they were hit by a laser pulse, which deflected them into an equal superposition of two momentum states travelling in different directions with an adjustable phase difference. This was the first “beamsplitter”. The researchers then decide whether to apply a second laser pulse to recombine the two states and create mixed states – one formed by adding the two waves and one formed by subtracting them – by using a quantum random-number generator. When applied, this final laser pulse made it impossible to tell which of the two paths the photon had travelled along. The team ran the experiment repeatedly, varying the phase difference between the paths.

Double pulse

Truscott’s team found that when the second laser pulse was not applied, the probability of the atom being detected in each of the momentum states was 0.5, regardless of the phase lag between the two. However, application of the second pulse produced a distinct sine-wave interference pattern. When the waves were perfectly in phase on arrival at the beamsplitter, they interfered constructively, always entering the state formed by adding them. When the waves were in antiphase, however, they interfered destructively and were always found in the state formed by subtracting them. This means that accepting our classical intuition about particles travelling well-defined paths would indeed force us into accepting backward causation. “I can’t prove that isn’t what occurs,” says Truscott, “But 99.999% of physicists would say that the measurement – i.e. whether the beamsplitter is in or out – brings the observable into reality, and at that point the particle decides whether to be a wave or a particle.”

Indeed, the results of both Truscott and Aspect’s experiments shows that a particle’s wave or particle nature is most likely undefined until a measurement is made. The other less likely option would be that of backward causation – that the particle somehow has information from the future – but this involves sending a message faster than light, which is forbidden by the rules of relativity.

Aspect is impressed. “It’s very, very nice work,” he says, “Of course, in this kind of thing there is no more real surprise, but it’s a beautiful achievement.” He adds that, beyond curiosity, the technology developed may have practical applications. “The fact that you can master single atoms with this degree of accuracy may be useful in quantum information,” he says.

Could a Distant, Dark Body End Life on Earth?

An unseen threat might come from deep space in the future. 

#space #earth #asteroid #supernova


DANGER ZONE. Many dark objects lie too far from the Sun to be observed. An unseen threat might come from deep space in the future. 

Listen to this article

Although we live in relative quiet within the cosmos, going about our lives and seeing the stars as a distant backdrop, we are very much part of the universe that surrounds us. Dangers lurk in space, as any glance at the Moon’s cratered surface confirms.

Not only must our planet avoid collisions with Earth-crossing asteroids, but more remote threats exist. If a nearby star went supernova, a gamma-ray burst erupted nearby, or a black hole or stream of antimatter somehow wandered into our neighborhood, it could spell disaster. While astronomers say those events are unlikely, another dark, distant interloper could create havoc on Earth by its mere presence. 

Where could such trouble come from? The Sun hasn’t always been a solitary star. It was born in a group of suns, as all stars are, and its native companions have been scattered by the gravitational tug created by orbiting the galaxy’s center. 

Yet some 5 billion years after the Sun’s birth, a few of its associates still linger near the old neighborhood. Among them are the Sun-like star Alpha (α) Centauri, the yellowish dwarf Tau (τ) Ceti, and the cool red dwarf Wolf 359. Is the Sun truly single, or could a cool, dark companion loom in the background, periodically nudging comets toward Earth? 

The discovery of Sedna, a trans-Neptunian object found in 2003, and the subsequent discovery of Eris, fueled the idea that large, dark bodies float in the solar system’s distant reaches. Those bodies exist apart from the numerous comets that populate the Oort Cloud. Close passages of well-known stars will occur far on down the line: For example, in less than a million and a half years, Gliese 710, a red dwarf now 60 light-years away, will slide within a light-year of the Sun. This will unleash a torrent of comets from the Oort Cloud into orbits that could intersect Earth’s, and they will arrive near our planet within a liberal span of about 2 million years. 

But bombings from comet nuclei could result from other sources, too. A number of astronomers suggest the Sun may have a hidden, dark companion that periodically sends comets sunward, raining them down on the inner solar system.


UNSEEN COMPANION. A small dim object called a brown dwarf could orbit the Sun in our solar system’s distant regions. Brown dwarfs fall somewhere between the smallest star and the largest planet. This artist’s conception shows a pair of brown dwarfs.NASA/ESA/A. Feild (STScI)

In 1984, University of Chicago paleontologists David Raup and J. John Sepkoski revealed their finding that Earth’s extinction events were periodic. At the time, they suggested the Sun’s orbit about the Milky Way’s center was responsible, unleashing comets at regular intervals of about 26 million years. 

In the same year, University of California, Berkeley, physicist Richard Muller proposed the responsible mechanism was “Nemesis,” an unseen, distant stellar companion to the Sun. Muller thought an M dwarf — a small, cool star — could lurk unnoticed in the distance yet have a huge effect on the Oort Cloud.  about:blank


With the advent of the Two Micron All-Sky Survey (2MASS), however, astronomers scoured the whole sky at near-infrared wavelengths, producing 2 million images that would have uncovered Nemesis, had it existed. So the mystery of what lurks out in the darkness beyond the Oort Cloud, if anything, continues.  

Not all scientists are unconcerned about the idea of a dark threat. Michael Rampino, a geologist at New York University, searches for an astronomical object he believes may be responsible for recurring extinction events every 25 to 35 million years. 

As suggestive evidence, Rampino employs the large-impact events that produced craters under the Chesapeake Bay between Virginia and Maryland and in Popigai, Siberia, about 35 million years ago and the K-T impact in the Yucatán Peninsula, the “dinosaur-killer” that occurred 65 million years ago. Rampino believes several smaller lines of evidence suggest another catastrophic impact 95 million years ago. 

If a dark monster is out there, it could be a small brown dwarf. If such a starlet exists, it might weigh less than 40 Jupiter masses, making it slip under the radar of the 2MASS survey. It would have a highly elliptical orbit that would make it hard to spot because most of its time would be spent far from us. Still, most astronomers remain skeptical. Only time will tell.

Will We Recognize Extraterrestrial Life When We See It?

Listen to this article

#space #extraterrestrial #UFO #UAP #unexplained

A leading expert on planetary astronomy reflects on what the next generation of space telescopes might reveal.

 image of 7 planets
For now, we can only imagine what the seven exoplanets in the TRAPPIST-1 system, 39 light years away, look like. Found in 2015 and 2017, they orbit a red dwarf star and are about the same size as Earth. (NASA)

When I look up at the stars, I love to wonder what kind of planets might be around each one. Every star is a sun, and astronomers have found thousands of planets orbiting other stars, called exoplanets. Perhaps there are intelligent beings on a distant planet, looking back at our sun—a star to them—wondering the same thing.

We astronomers are unabashedly anticipating a paradigm shift in exoplanet characterization—made possible by a sophisticated new telescope over 30 years in the making: the James Webb Space Telescope, set for launch this October. Webb will undergo a series of daunting deployments, including the unfurling of a tennis court-sized, five-layer sunshield before reaching its destination a million miles away from Earth. Thousands of astronomers all around the world have pinned their research hopes and dreams on Webb, not just for exoplanets but for many frontier topics in astronomy. But for those of us studying exoplanets, Webb will open a new window.

multicolored clouds swirling on Venus
An ultraviolet camera on the Japanese Venus climate orbiter Akatsuki returned images later processed with false color and showing details of the planet’s clouds. (© JAXA)

Webb will bring us our first chance to routinely observe small rocky exoplanet atmospheres. Atmospheric water vapor would indicate the presence of surface liquid water oceans—key because a liquid solvent is needed for life. Imagine: Soon we may know that rocky planets with liquid water exist and are common—implying that habitable worlds might be all around us. Even more compelling is the chance to identify atmospheric gases that might be attributed to life, called biosignature gases. For example, molecular oxygen fills Earth’s atmosphere to 20 percent by volume but is so highly reactive it should not be present at all, without continual replenishment—in this case, by plants and photosynthetic bacteria. If molecular oxygen appeared in the atmosphere of a small rocky exoplanet, we would likewise assume that some process is at work there to continually replenish it. Admittedly, getting a strong robust signal from small exoplanet atmospheres might be tough for Webb, possibly right at the edge of its capabilities. True Earth twins—those Earth-size planets in Earth-like orbits about stars like our sun—are completely out of this telescope’s reach.

Instead, Webb’s ultimate lottery ticket is one of the handful of small planets transiting small red dwarf stars. Such planets orbiting in the “Goldilocks zone” will be different from Earth: locked into a rotation rate that causes a permanent day and permanent night side and bombarded by intense high-energy radiation from frequent stellar flares.

Transiting Exoplanet Survey Satellite
The Transiting Exoplanet Survey Satellite has found 2,600 planet candidates. Coming soon: a telescope that can study their atmospheres. (NASA)

We may have already found a biosignature gas right next door, on our sister planet Venus. Venus, with its scorching surface so hot no life of any kind could survive, seems an unlikely abode. But a cloud-filled layer well above the surface does have a suitable temperature for life. The cloud environment is very harsh—highly acidic and incredibly dry—nonetheless, people have speculated about life in the Venus clouds for more than half a century.

I was part of a team led by Professor Jane Greaves that recently reported the detection of phosphine gas from radio telescope observations of Venus. We calculated that no known chemical process—from volcanoes to lightning to meteorite delivery and more—could produce phosphine in anywhere near the part-per-billion quantities inferred from our data. In addition, there simply is not enough hydrogen nor the right temperatures and pressures for phosphine (PH3) to form on its own. We are left with the possibility of unknown chemistry, or more speculatively, the possibility of life. On Earth, phosphine gas is associated only with life, produced by bacteria in oxygen-free environments such as wetlands and by humans for industry.

What followed our announcement was healthy, but unexpectedly harsh, skepticism from the scientific community. Some reanalyzed our data and did not find the signal. Others re-found the signal but attributed it to sulfur dioxide and not phosphine. Another team found independent evidence for phosphine in archived data taken directly in the Venus atmosphere by the 1978 NASA Pioneer Venus probe. Many scientists insisted the presence of phosphine can be explained by known chemistry, though no claims have yet been substantiated with scientific publications. The debate about phosphine gas on Venus will continue.

My exoplanet “finish line” has suddenly moved from a few years away to infinitely distanced. For even if we find a potential biosignature gas in an exoplanet atmosphere with Webb (or another of the planned or proposed next-generation telescopes), will the community agree that a tiny signal is more than noise in the data? If a robust signal is found, is there any way to associate the gas with life and not from chemistry in an unknown planetary environment? After all, we will have vastly less information for distant exoplanets as compared to up-close Venus, a planet with decades of observations and visits by over two dozen spacecraft.

replica of the James Webb Space Telescope
When the Super Bowl went to Houston in 2017, a full-scale replica of the James Webb Space Telescope was there in the city to greet the fans. Long-awaited by the public and scientists alike, the JWST will begin a new era of astronomical discovery. (Alberto Conti)

Thankfully scientists have no shortage of imagination. Starshot is a project to launch thousands of tiny spacechips with four-meter-wide solar sails, accelerated to 20 percent the speed of light by a bank of coherent ground-based lasers with a combined power of gigawatts. After a 20-year journey to our nearest star system, Alpha Centauri, some of the surviving and still rapidly traveling starchips will take and send images of any planets back to Earth. An equally ambitious concept envisions a spacecraft 50 billion miles away from Earth, perfectly lined up with the sun and a distant exoplanet. The telescope can then use the sun as a powerful gravitational lens to magnify the exoplanet so highly that the planet surface could be imaged at a resolution of 10 kilometers.

The discovery and characterization of exoplanets has come a long way in the millennia since humans have pondered the mysteries of the multitude of stars. We are lucky to be the first generation who will not just hope, but can truly explore the nearest stars for worlds that are habitable, and just maybe, inhabited.

MIT Professor Sara Seager’s research has introduced many foundational ideas to the field of exoplanets and is now focusesd on the search for the first Earth-like exoplanets and signs of life on them.

Is the Earth’s “heartbeat” of 7.83 Hz influencing human behavior?

#Earth #Space #brainwaves #hypnosis

Listen to article

Some scientists believe the lightning-produced frequencies may be connected to our brain waves, meditation, and hypnosis.

Is the Earth's "heartbeat" of 7.83 Hz influencing human behavior?

Schumann Resonance.Credit: NASA/Goddard Conceptual Image Lab.

  • The Schumann Resonances are a set of frequencies produced by electromagnetic waves in Earth’s lower ionosphere.
  • The frequencies, created from thunderstorms and lightning, range from 7.83 Hz, called the Earth’s “heartbeat,” to 33.8 Hz.
  • The Schumann Resonance has been studied for its effect on the planet as well as on humans.

Flashes of lightning that strike around the earth about 50 times every second create low frequency electromagnetic waves that encompass the planet. These waves, dubbed Schumann Resonances, may have an affect on human behavior, think some scientists.

Kept up by the 2,000 or so thunderstorms that (according to NASA) batter our planet every moment, the Schumann Resonances can be found in the waves that go up to about 60 miles above in the lower ionosphere part of our atmosphere. They stay up there thanks to electric conductivity in the ionosphere that features charged ions, separated from neutral gas atoms in the area by solar radiation, as explains Interesting Engineering. This allows the ionosphere to capture electromagnetic waves.

The Schumann Resonances encircle the Earth, repeating the beat which has been used to study the planet’s electric environment, weather, and seasons. Flowing around our planet, the waves’ crests and troughs align in resonance to amplify the initial signal.

The waves were named after Winfried Otto Schumann, in honor of his seminal work on global resonances in mid-1950s. First measured in the early 1960s, the very low-frequency waves (with the base at 7.83 Hertz) oscillate between greater and lower energy. The frequency 7.83 Hz has been called the Earth’s “heartbeat.” Progressively weaker harmonics have been measured at around 14.3, 20.8, 27.3, and 33.8 Hz.

The resonances fluctuate with variations in the ionosphere, with the intensity of solar radiation playing a major part. At night, for example, that part of the ionosphere becomes thinner.

The world’s lighting hotspots in Asia, Africa, and South America, whose storms are seasonal and affected by whether its night or day, also influence the strength of the resonance.

These waves have also been studied for their impact on humans. A 2006 study found that the frequencies may be related to different kinds of brain waves. The researchers described “real time coherence between variations in the Schumann and brain activity spectra within the 6–16 Hz band.” Authors of a 2016 paper from the Behavioural Neuroscience Laboratory of Canada’s Laurentian University discovered that 238 measurements from 184 individuals over a 3.5 year period “demonstrated unexpected similarities in the spectral patterns and strengths of electromagnetic fields generated by the human brain and the earth-ionospheric cavity.”

The Schumann Resonance of 7.83 Hz has also been linked by some to hypnosis, meditation, and even human growth hormones but there’s less rigorous scientific evidence of those connections at this point.

Can our bodies truly be affected by electromagnetic frequencies generated by incessant lighting strikes? Certainly some of the speculation ventures into new age science. Some believe a spike in the resonance can influence people and animals, while a reversal may also be possible, where human consciousness can both be impacted by and itself impact the Schumann Resonances. By this logic, a sudden source of global stress that produces worldwide tension would be able to change the resonances. Some have even blamed the stress caused by the Schumann Resonances that resulted from the ancient Chicxulub impact event, when a huge asteroid struck Mexico, for the demise of the dinosaurs.

The frequencies in the Schumann Resonance.Source: STW/Wikimedia

While the imaginative effects of the Schumann Resonances are still up for much more scientific study, the fascination with this unique natural phenomenon continues.

AI Designs Quantum Physics Experiments Beyond What Any Human Has Conceived

#AI #Quantum #Physics #Experiments

Listen to this article

Originally built to speed up calculations, a machine-learning system is now making shocking progress at the frontiers of experimental quantum physics

AI Designs Quantum Physics Experiments Beyond What Any Human Has Conceived
Credit: Getty Images

Quantum physicist Mario Krenn remembers sitting in a café in Vienna in early 2016, poring over computer printouts, trying to make sense of what MELVIN had found. MELVIN was a machine-learning algorithm Krenn had built, a kind of artificial intelligence. Its job was to mix and match the building blocks of standard quantum experiments and find solutions to new problems. And it did find many interesting ones. But there was one that made no sense.

“The first thing I thought was, ‘My program has a bug, because the solution cannot exist,’” Krenn says. MELVIN had seemingly solved the problem of creating highly complex entangled states involving multiple photons (entangled states being those that once made Albert Einstein invoke the specter of “spooky action at a distance”). Krenn and his colleagues had not explicitly provided MELVIN the rules needed to generate such complex states, yet it had found a way. Eventually, he realized that the algorithm had rediscovered a type of experimental arrangement that had been devised in the early 1990s. But those experiments had been much simpler. MELVIN had cracked a far more complex puzzle.

“When we understood what was going on, we were immediately able to generalize [the solution],” says Krenn, who is now at the University of Toronto. Since then, other teams have started performing the experiments identified by MELVIN, allowing them to test the conceptual underpinnings of quantum mechanics in new ways. Meanwhile Krenn, Anton Zeilinger of the University of Vienna and their colleagues have refined their machine-learning algorithms. Their latest effort, an AI called THESEUS, has upped the ante: it is orders of magnitude faster than MELVIN, and humans can readily parse its output. While it would take Krenn and his colleagues days or even weeks to understand MELVIN’s meanderings, they can almost immediately figure out what THESEUS is saying.

“It is amazing work,” says theoretical quantum physicist Renato Renner of the Institute for Theoretical Physics at the Swiss Federal Institute of Technology Zurich, who reviewed a 2020 study about THESEUS by Krenn and Zeilinger but was not directly involved in these efforts.

Krenn stumbled on this entire research program somewhat by accident when he and his colleagues were trying to figure out how to experimentally create quantum states of photons entangled in a very particular manner: When two photons interact, they become entangled, and both can only be mathematically described using a single shared quantum state. If you measure the state of one photon, the measurement instantly fixes the state of the other even if the two are kilometers apart (hence Einstein’s derisive comments on entanglement being “spooky”).

In 1989 three physicists—Daniel Greenberger, the late Michael Horne and Zeilinger—described an entangled state that came to be known as “GHZ” (after their initials). It involved four photons, each of which could be in a quantum superposition of, say, two states, 0 and 1 (a quantum state called a qubit). In their paper, the GHZ state involved entangling four qubits such that the entire system was in a two-dimensional quantum superposition of states 0000 and 1111. If you measured one of the photons and found it in state 0, the superposition would collapse, and the other photons would also be in state 0. The same went for state 1. In the late 1990s Zeilinger and his colleagues experimentally observed GHZ states using three qubits for the first time.

Krenn and his colleagues were aiming for GHZ states of higher dimensions. They wanted to work with three photons, where each photon had a dimensionality of three, meaning it could be in a superposition of three states: 0, 1 and 2. This quantum state is called a qutrit. The entanglement the team was after was a three-dimensional GHZ state that was a superposition of states 000, 111 and 222. Such states are important ingredients for secure quantum communications and faster quantum computing. In late 2013 the researchers spent weeks designing experiments on blackboards and doing the calculations to see if their setups could generate the required quantum states. But each time they failed. “I thought, ‘This is absolutely insane. Why can’t we come up with a setup?’” says Krenn says.

To speed up the process, Krenn first wrote a computer program that took an experimental setup and calculated the output. Then he upgraded the program to allow it to incorporate in its calculations the same building blocks that experimenters use to create and manipulate photons on an optical bench: lasers, nonlinear crystals, beam splitters, phase shifters, holograms, and the like. The program searched through a large space of configurations by randomly mixing and matching the building blocks, performed the calculations and spat out the result. MELVIN was born. “Within a few hours, the program found a solution that we scientists—three experimentalists and one theorist—could not come up with for months,” Krenn says. “That was a crazy day. I could not believe that it happened.”

Then he gave MELVIN more smarts. Anytime it found a setup that did something useful, MELVIN added that setup to its toolbox. “The algorithm remembers that and tries to reuse it for more complex solutions,” Krenn says.

It was this more evolved MELVIN that left Krenn scratching his head in a Viennese café. He had set it running with an experimental toolbox that contained two crystals, each capable of generating a pair of photons entangled in three dimensions. Krenn’s naive expectation was that MELVIN would find configurations that combined these pairs of photons to create entangled states of at most nine dimensions. But “it actually found one solution, an extremely rare case, that has much higher entanglement than the rest of the states,” Krenn says.

Eventually, he figured out that MELVIN had used a technique that multiple teams had developed nearly three decades ago. In 1991 one method was designed by Xin Yu Zou, Li Jun Wang and Leonard Mandel, all then at the University of Rochester. And in 1994 Zeilinger, then at the University of Innsbruck in Austria, and his colleagues came up with another. Conceptually, these experiments attempted something similar, but the configuration that Zeilinger and his colleagues devised is simpler to understand. It starts with one crystal that generates a pair of photons (A and B). The paths of these photons go right through another crystal, which can also generate two photons (C and D). The paths of photon A from the first crystal and of photon C from the second overlap exactly and lead to the same detector. If that detector clicks, it is impossible to tell whether the photon originated from the first or the second crystal. The same goes for photons B and D.

A phase shifter is a device that effectively increases the path a photon travels as some fraction of its wavelength. If you were to introduce a phase shifter in one of the paths between the crystals and kept changing the amount of phase shift, you could cause constructive and destructive interference at the detectors. For example, each of the crystals could be generating, say, 1,000 pairs of photons per second. With constructive interference, the detectors would register 4,000 pairs of photons per second. And with destructive interference, they would detect none: the system as a whole would not create any photons even though individual crystals would be generating 1,000 pairs a second. “That is actually quite crazy, when you think about it,” Krenn says.

MELVIN’s funky solution involved such overlapping paths. What had flummoxed Krenn was that the algorithm had only two crystals in its toolbox. And instead of using those crystals at the beginning of the experimental setup, it had wedged them inside an interferometer (a device that splits the path of, say, a photon into two and then recombines them). After much effort, he realized that the setup MELVIN had found was equivalent to one involving more than two crystals, each generating pairs of photons, such that their paths to the detectors overlapped. The configuration could be used to generate high-dimensional entangled states.

Quantum physicist Nora Tischler, who was a Ph.D. student working with Zeilinger on an unrelated topic when MELVIN was being put through its paces, was paying attention to these developments. “It was kind of clear from the beginning [that such an] experiment wouldn’t exist if it hadn’t been discovered by an algorithm,” she says.

Besides generating complex entangled states, the setup using more than two crystals with overlapping paths can be employed to perform a generalized form of Zeilinger’s 1994 quantum interference experiments with two crystals. Aephraim Steinberg, an experimentalist at the University of Toronto, who is a colleague of Krenn’s but has not worked on these projects, is impressed by what the AI found. “This is a generalization that (to my knowledge) no human dreamed up in the intervening decades and might never have done,” he says. “It’s a gorgeous first example of the kind of new explorations these thinking machines can take us on.”

In one such generalized configuration with four crystals, each generating a pair of photons, and overlapping paths leading to four detectors, quantum interference can create situations where either all four detectors click (constructive interference) or none of them do so (destructive interference).

But until recently, carrying out such an experiment remained a distant dream. Then, in a March preprint paper, a team led by Lan-Tian Feng of the University of Science and Technology of China , in collaboration with Krenn, reported that they had fabricated the entire setup on a single photonic chip and performed the experiment. The researchers collected data for more than 16 hours: a feat made possible because of the photonic chip’s incredible optical stability, something that would have been impossible to achieve in a larger-scale tabletop experiment. For starters, the setup would require a square meter’s worth of optical elements precisely aligned on an optical bench, Steinberg says. Besides, “a single optical element jittering or drifting by a thousandth of the diameter of a human hair during those 16 hours could be enough to wash out the effect,” he says.

During their early attempts to simplify and generalize what MELVIN had found, Krenn and his colleagues realized that the solution resembled abstract mathematical forms called graphs, which contain vertices and edges and are used to depict pairwise relations between objects. For these quantum experiments, every path a photon takes is represented by a vertex. And a crystal, for example, is represented by an edge connecting two vertices. MELVIN first produced such a graph and then performed a mathematical operation on it. The operation, called “perfect matching,” involves generating an equivalent graph in which each vertex is connected to only one edge. This process makes calculating the final quantum state much easier, although it is still hard for humans to understand.

That changed with MELVIN’s successor THESEUS, which generates much simpler graphs by winnowing the first complex graph representing a solution that it finds down to the bare minimum number of edges and vertices (such that any further deletion destroys the setup’s ability to generate the desired quantum states). Such graphs are simpler than MELVIN’s perfect matching graphs, so it is even easier to make sense of any AI-generated solution.

Renner is particularly impressed by THESEUS’s human-interpretable outputs. “The solution is designed in such a way that the number of connections in the graph is minimized,” he says. “And that’s naturally a solution we can better understand than if you had a very complex graph.”

Eric Cavalcanti of Griffith University in Australia is both impressed by the work and circumspect about it. “These machine-learning techniques represent an interesting development. For a human scientist looking at the data and interpreting it, some of the solutions may look like ‘creative’ new solutions. But at this stage, these algorithms are still far from a level where it could be said that they are having truly new ideas or coming up with new concepts,” he says. “On the other hand, I do think that one day they will get there. So these are baby steps—but we have to start somewhere.”

Steinberg agrees. “For now, they are just amazing tools,” he says. “And like all the best tools, they’re already enabling us to do some things we probably wouldn’t have done without them.”

Space debris: How dangerous is it to people on Earth?

#space #junk #hazard #earth

A 2013 graphic of all human-made space objects result from the near-5000 launches since the start of the space age.
A 2013 graphic of all human-made space objects result from the near-5000 launches since the start of the space age. ESA
Listen to this article

Over the past few months, people have captured footage of space debris burning up in our atmosphere. While certainly startling, the truth is, there’s been a lot of junk up there for a long time and so far no one has been hurt here on Earth.

Since the first satellite went into orbit — the Soviet Union’s Sputnik, launched on Oct. 4, 1957 — we have steadily increased the amount of objects encircling our small planet.

And it’s not just satellites. When speaking of space debris, agencies are specifically referring to inactive, human-made objects that orbit the Earth.

According to the European Space Agency (ESA), which estimates that there are about 23,000 objects from roughly 5,000 launches (as of 2012), about 65 per cent of the objects they have catalogued are as a result of 250 break-ups in orbit about 10 collisions.

WATCH: Space Debris: 1957-2015

Shockingly, most of those fragments came from a Chinese anti-satellite test that targeted the Feng Yun-1C weather satellite in 2007 which created more than 3,300 pieces of debris. In February 2009, an additional 2,200 fragments were created by the first accidental collision between two satellites, Iridium-33 and Kosmos-2251.

About 20 per cent of the objects are satellites (with fewer than 1/3 operational) and another 17 per cent are used rocket bodies and other objects from space missions. The remainder is debris from fragmentation.ESA

According to ESA, if there is a collision at a speed of about 10 km/s in low-orbit by anything larger than 10 cm, it is considered “catastrophic.” And in space, catastrophic means the destruction of your spacecraft.

Collisions create something called the Kessler Syndrome where it becomes a cascading effect: debris creates more debris which creates more and on and on it goes. Anything larger than 1 cm can damage or destroy satellites. Millimetre-sized objects could disable the systems of a satellite.

Aside from the ESA, other countries track debris as well, including the U.S. Strategic Command.

But every so often, in order to avoid collisions, space agencies will slightly adjust the positions of their satellites. But these thousands of pieces pose a risk to astronauts on a daily basis. Every so often NASA needs to readjust the station’s orbit in order to avoid debris.

When Canadian Chris Hadfield was on board the station in 2013, he noticed a small hole on one of the solar arrays.

Are we in danger?

Now, the big question is: How dangerous is this debris to us, down here on Earth?

ESA estimates that in all, about 75 per cent of large objects launched into space have already re-entered Earth’s atmosphere.

There’s something else that protects us from most space debris: our atmosphere. Anything that experiences a decay in orbit has to get through that first. You can think of it as our firewall.

“In the last 10 minutes before reaching the ground, the dense atmosphere starts to heat up and decelerate the object,” the ESA says. “In the case of very compact and massive satellites, and if a large amount of high melting-point material is involved such as stainless steel or titanium, fragments of the vehicle may reach the ground.”

However, it’s important to note that about 75 per cent of the Earth is covered in water and large parts of our land is uninhabited. So, “the risk for a single individual is several orders of magnitude smaller than commonly accepted risks in daily life,” the agency says.

In 2002, NASA estimated that the chances of being hit by space debris is 1 in 3,200.

That doesn’t mean nothing reaches terra firma.

Likely one of the most remembered space debris that impacted land was NASA’s Skylab in 1979.A U.S. Customs inspector examines the largest piece of the downed Skylab at the San Francisco International Airport two weeks after it was found in Australia. Canadian Press/Everett Collection

The space station launched in 1973 and was operational until 1979 when it re-entered the Earth’s atmosphere. It was a public spectacle with people betting on where it would land. The San Francisco Chronicle even offered a $200,000 “reward” if a subscriber was hit by debris.

Ultimately, NASA adjusted its orbit to have it crash in South Africa. However, due to an error — and the fact that it didn’t burn up as quickly as they’d anticipated — the remaining debris crashed southeast of Perth, Australia (in fact, the Shire of Esperance fined NASA $400 for littering).

But as we continually launch more and more into space, it’s clear that we can’t continue this process forever.

At the end of May, European organizations are gathering to discuss the mitigation and removal of space debris, which may help reduce any further risk to astronauts or inhabitants here on the ground, in case our luck runs out.

You can keep track of space debris yourself by visiting, Satview, a site that estimates the re-entry of various space debris.

The greatest threat to life on Earth may come from space

The greatest threat to life on Earth may come from space

  • #space #Asteroids #DART
Listen to article

A large eruption on the surface of the sun

Asteroids and space debris could wreak untold devastation on the planet

Next year, Nasa will launch what all involved hope will be the most impactful space mission to date. The Double Asteroid Redirection Test (Dart) is designed to smash headlong into its target. It’s an attempt to deflect an asteroid as a test of what to do if we spot a similar space rock on a collision course with our planet.

It’s hardly news we want to hear at a time of so many domestic problems, but the threat from near-Earth asteroids is just one of a string of dangers that the planet and its technology are facing from space. Explosions on the sun create “space weather” that can play havoc with our satellites and other electrical systems, while the growing amount of space debris imperils the satellites that we all invisibly rely on.

The truth is our way of life utterly relies on space. The UK government now classes space as one of the nation’s 13 critical infrastructure sectors. And it needs protecting.

This November, science ministers from the various countries that belong to the European Space Agency (Esa) will gather in Seville, Spain, to decide the agency’s funding and priorities for the next three years. Attending the meeting is not something that depends on Brexit. Esa is an independent organisation from the EU, and the UK has every intention of staying a member no matter what happens on 31 October. Included in that will be the creation of a comprehensive €200m a year programme of planetary defence.

One spacecraft hits the asteroid, the other measures what happens. Nasa and Esa collaborate to split the cost

If approved, it would begin with a mission called Hera. This would investigate the aftermath of Nasa’s Dart impact, collecting enough data to turn the impact test into a workable asteroid defence programme. And that’s not all.

Called Space Safety, the programme also proposes missions to warn us against space weather and begin the removal of space debris. “All threats are viewed as equally important,” says Holger Krag, head of the programme.

But that might not be the view of the various member countries, where funding is likely to be limited. If the full €200m is not forthcoming, ministers will have to decide which threats to tackle and which ones to simply cross our fingers over.

Here’s Our Best Look Yet at Saturn’s ‘UFO’ Moon

Saturn's moon, Pan
One of Cassini’s new views of Saturn’s moon Pan.PHOTOGRAPH BY NASA/JPL-CALTECH/SPACE SCIENCE INSTITUTE
Listen to this article

Saturn’s ‘UFO’ Moon Pan is unlike anything else you will encounter!

#UFO #Moon #Staurn #Pan

Adorned with a thin band of icy ring particles, the small moon Pan inspires comparisons to alien spacecraft, walnuts, and even ravioli.

There’s a tiny “flying saucer” orbiting deep within Saturn’s rings, and a NASA probe has just gotten its most impressive look yet at the strange object.

The saucer is actually a little moon called Pan, and NASA’s Cassini spacecraft captured its distinctive shape on March 7 in a stunningly detailed series of images.

When she first saw the new pictures of Pan, Cassini scientist Carolyn Porco thought they might be an artist’s representation.

Saturn's moon, Pan
Another raw image from Cassini showcases Pan’s equatorial band.

“They are real! Science is better than fiction,” she later commented.

Named for the flute-playing Greek god of wild places, 21-mile-wide Pan is what’s called a shepherd moon. It lives within a gap in Saturn’s A ring, which is the farthest loop of icy particles from the planet. As it zips around Saturn, Pan continually clears debris from the gap by vacuuming up some ring particles and punting others away, like a little Roomba with a force field.

In fact, it’s this absence of ring junk that led scientists to predict Pan’s existence as early as the mid-1980s. But the small moon wasn’t officially discovered until 1990, when Mark Showalter and his colleagues took a good look at images returned by the Voyager 2 spacecraft and found the moon that is responsible for the gap’s existence.about:blank

Now, with the Cassini spacecraft zooming through the Saturnian system, scientists have gotten the chance to see Pan up close. Early images revealed its walnut shape, which Porco and her colleagues attributed to debris from the rings.

These more recent images show in detail that the moon is swaddled in what’s called an equatorial accretion disk, or a smooth, thin layer of ring particles that have been glued on to Pan’s waistline by the moon’s meager gravity.

“This is such a far cry from the nondescript ‘dots’ that I was tracking way back in 1990 in the Voyager images! It’s very gratifying finally to see Pan’s closeup,”says Showalter, now at the SETI Institute in California.

In a 2007 study published in Science, Porco suggested the thin disk formed long ago, before the moon had completely vacuumed out material from the gap.

“The shape, as others have also pointed out, is probably because it is always sweeping up fine dust from the rings,” Showalter explains. “The rings are very thin compared to the size of Pan, so the dust accumulates around its equator.”

Pan isn’t alone in its bizarre appearance: Another small moon, Atlas, bears a similar shape for similar reasons.

UFO experts on intelligence report: ‘Whatever this is, it is more complex than we can possibly imagine’

Director of National Intelligence couldn’t explain 143 of 144 UFOs

  • #space #Extraterrestrial #UFO #UAP #Unexplained
Listen to this article

Leaked information from intel officials says there is no evidence that aliens are responsible for recent UFO sightings, but they are also not being ruled out. Investigative filmmaker Jeremy Corbell reacts.

Even if the UFOs that hundreds of military pilots and thousands of everyday citizens have spotted are extraterrestrial in origin, they are likely far too complex for us to understand, UFO experts told Fox News in the wake of an inconclusive report released Friday by the Director of National Intelligence on unidentified aerial phenomena (UAP). 

The report, which was ordered by Congress last year, examined 144 reports of UAPs from U.S. government sources since 2004. 

Eighty of the reported incidents were observed with multiple sensors, including “radar, infrared, electro-optical, weapon seekers, and visual observation.”

In 18 of the incidents, “unusual UAP movement patterns or flight characteristics” were observed, including the ability to “remain stationary in winds aloft, move against the wind, maneuver abruptly, or move at considerable speed, without discernable means of propulsion.”

Despite the intriguing sightings, U.S. intelligence analysts could only explain one of the sightings, which was a large balloon deflating. 

Colonel John B. Alexander, who developed an interagency task force to explore UFOs while in the U.S. Army in the 1980s, said that if the phenomena are extraterrestrial, they are likely far beyond what humans are capable of understanding with our current faculties. 

“Whatever this is, it is more complex than we can possibly imagine,” Alexander told Fox News. “We’re not at the point of even asking the right questions, much less expecting simple answers.”

Military pilots have seen dozens of UFOs in recent years. 

Military pilots have seen dozens of UFOs in recent years.  (Department of Defense)

Seth Shostak, a senior astronomer at the SETI Institute who is doubtful that these UAPs are extraterrestrial, pointed out that aliens would nonetheless have technology that is incomprehensibly more advanced than what we’re accustomed to. 

“The universe is three times as old as the earth. There’s plenty of time for societies to arise that are not just a thousand years more advanced than we are, but they could be a billion years more advanced than we are,” Shostak told Fox News. 

“So if you ask yourself, ‘What could that kind of a society do?’ There are things they could do that we simply can’t conceive of.” Video

Shostak bets that humans will have better luck looking to the stars to find aliens than scouring our own atmosphere. 

“We’re not looking for them a couple of miles up. We’re looking for them lightyears away,” Shostak said. “We look at star systems, other suns that are relatively nearby, that are either known to have planets and maybe planets like earth.” 

study published in The Astronomical Journal last year found that there are likely billions of Earth-like planets just in our galaxy. 

Even if these UAPs aren’t proof of extraterrestrial life, Alexander agreed that aliens are out there, in some form or another. 

“Is there life elsewhere in the universe? The answer is yes, and that’s not speculation, that’s math,” Alexander said. “That’s just based on the number of Earth-like planets or inhabitable planets that are out there.” 

Woah! Giant Comet/Minor Planet Is Approaching From Oort Cloud

Mega Comet Inbound From Oort Cloud

#comet #planet #space

Listen to this article
Curved lines showing solar system plus arc of new mega comet by Saturn's orbit.
View full-sized image. | The newly discovered mega comet, 2014 UN271, is currently diving from the outer solar system. At its closest to our sun, it’ll come close to the orbit of the outer planet Saturn in 2031. Image via NASA.

Don’t worry, but a huge comet is headed toward our sun. Scientists found it while studying old images from 2014 to 2018 taken for the Dark Energy Survey. Two University of Pennsylvania astronomers, Pedro Bernardinelli and Gary Bernstein, spotted the object heading inward from the Oort Cloud, possibly from as far as half a light-year away. Many have been calling it a mega comet.

The object was originally designed 2014 UN271. It’s now been officially named Comet Bernardinelli-Bernstein, for its discoverers.

It’s thought to be the largest comet yet discovered, possibly as big as a dwarf planet. It’s still far away and hard to see, but the current estimate suggests its nucleus, or core, is between 62 to 230 miles (100 to 370 km) in diameter. Whoa! That’s big for a comet.

The mega comet is not coming very close to us. It’ll make its closest approach in 2031, when it’ll sail just outside of the orbit of our sun’s 6th planet, Saturn. Saturn’s orbit is some nine and a half times farther from the sun than Earth’s orbit. So there’s no danger to us here.Must Watch Sky Events in 2021

Pedro Bernardinelli announced the discovery on Twitter on June 19, 2021.

Mega comet will near Saturn by 2031

The scientists scoured the survey images and discovered 2014 UN271 moving from 29 astronomical units, or AU (1 AU is the distance between Earth and the sun), to 23 AU. At its closest approach, 2014 UN271 will come within about 10 AU to the sun, which is in the realm of Saturn. Scientists didn’t find just this mega comet, though. The full search of the six years of survey data for trans-Neptunian objects turned up more than 800 objects.

Pixelated large white dot in gray background, labeled Signal.
The signal within the noise. This is the mega comet or dwarf planet-sized object labeled as a signal. The scientists examined old images to find 2014 UN271 as it lumbers inward toward the sun. Image via Pedro Bernardinelli.

Is 2014 UN271 the largest comet yet?

So the current estimate is that 2014 UN271 is between 62 to 230 miles (100 to 370 km) in diameter. If it turns out to be at the larger end of that range, it would be the largest Oort Cloud object yet discovered. (Comet Sarabat of 1729 is potentially the largest comet ever seen, with size estimates of 100 km, about 60 miles, in diameter. Comet Sarabat came much closer, within 3 AU of Earth, during its closest pass.) Whether 2014 UN271 takes on a traditional comet appearance and will grow a coma or a tail is yet to be seen. Scientists will have their eyes trained on the mega comet as it nears Saturn in 2031.

2014 UN271’s unusual orbit, which takes it from deep in the Oort Cloud straight in toward the sun, is hundreds of thousands of years long, the exact number yet to be determined. Despite its large size for a comet and nearness to us in 2031, astronomers do not expect the mega comet to brighten enough for us on Earth to see without powerful telescopes.

Scientists are working on a paper about the new object, which should be published in the new few months.

Bottom line: Scientists discovered a new object headed toward the inner regions of the solar system. 2014 UN271 may be the largest Oort Cloud object currently known.

UFO Report: US finds no explanation for sighting

  • #space #Extraterrestrial #UFO #UAP

UFO report: Do Americans believe something’s out there?

Listen to article

The US government has said it has no explanation for dozens of unidentified flying objects seen by military pilots.

A Pentagon report released on Friday says of 144 reports made about the phenomena since 2004, all but one remain unexplained.

It does not rule out the possibility that the objects are extra-terrestrial.

Congress demanded the report after the US military reported numerous instance of objects seen moving erratically in the sky.

The Pentagon then established the Unidentified Aerial Phenomena Task Force last August to look into the reports.

The group’s job was to “detect, analyse and catalogue” these events, as well as to “gain insight” into the “nature and origins” of UFOs, the Pentagon said.

Did the report reveal anything new?

The interim report released on Friday said most of the 144 reported cases of the “unidentified aerial phenomena” (UAP), came in the last two years, after the US Navy put in place a standardised reporting mechanism.

In 143 of the reported cases, they “lack sufficient information in our dataset to attribute incidents to specific explanations”.

Crucially, it said there were “no clear indications that there is any non-terrestrial explanation” for the aircraft, but also did not rule it out.

UAP “probably lack a single explanation”, the report said. Some could be technologies from another nation like China or Russia, others could be natural atmospheric phenomena like ice crystals that could register on radar systems, while the report also suggested some could be “attributable to developments and classified programs by US entities”.

The one case they could identify “with high confidence” was identified as “a large, deflating balloon”, the report said.

It added that the UAP posed “a clear safety of flight issue and may pose a challenge to US national security”.

The taskforce is now “looking for novel ways to increase collection” of reports and gather more information, adding that “additional funding” could “further study of the topics laid out in this report”.

What evidence is there?

The US Department of Defense released videos of the UAPs in April 2020. It said they had been filmed by the US Navy.

In a CBS News 60 Minutes episode last month, two former Navy pilots discussed seeing an object in the Pacific Ocean that appeared to mirror their movements.

One pilot described it as a “little white Tic-Tac-looking object”, referring to the white oblong mints.

“And that’s exactly what it looked like, except it was travelling very fast and very erratically and we couldn’t anticipate which way it was going to turn or how it was manoeuvring the way that it was, or the propulsion system,” witness and former Navy pilot Alex Dietrich told BBC News.

“It didn’t have any apparent smoke trail or propulsion. It didn’t have any apparent flight control surfaces to manoeuvre in the way that it was manoeuvring.”

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE Preliminary Assessment: Unidentified Aerial Phenomena

Listen to this report


This preliminary report is provided by the Office of the Director of National Intelligence (ODNI) in response to the provision in Senate Report 116-233, accompanying the Intelligence Authorization Act (IAA) for Fiscal Year 2021, that the DNI, in consultation with the Secretary of Defense (SECDEF), is to submit an intelligence assessment of the threat posed by unidentified aerial phenomena (UAP) and the progress the Department of Defense Unidentified Aerial Phenomena Task Force (UAPTF) has made in understanding this threat.

This report provides an overview for policymakers of the challenges associated with characterizing the potential threat posed by UAP while also providing a means to develop relevant processes, policies, technologies, and training for the U.S. military and other U.S. Government (USG) personnel if and when they encounter UAP, so as to enhance the Intelligence
Community’s (IC) ability to understand the threat. The Director, UAPTF, is the accountable official for ensuring the timely collection and consolidation of data on UAP. The dataset described in this report is currently limited primarily to U.S. Government reporting of incidents occurring from November 2004 to March 2021. Data continues to be collected and analyzed.

ODNI prepared this report for the Congressional Intelligence and Armed Services Committees. UAPTF and the ODNI National Intelligence Manager for Aviation drafted this report, with input from USD(I&S), DIA, FBI, NRO, NGA, NSA, Air Force, Army, Navy, Navy/ONI, DARPA, FAA, NOAA, NGA, ODNI/NIM-Emerging and Disruptive Technology, ODNI/National
Counterintelligence and Security Center, and ODNI/National Intelligence Council.

Various forms of sensors that register UAP generally operate correctly and capture enough real data to allow initial assessments, but some UAP may be attributable to sensor anomalies.

The limited amount of high-quality reporting on unidentified aerial phenomena (UAP) hampers our ability to draw firm conclusions about the nature or intent of UAP. The Unidentified Aerial Phenomena Task Force (UAPTF) considered a range of information on UAP described in U.S. military and IC (Intelligence Community) reporting, but because the reporting lacked sufficient specificity, ultimately recognized that a unique, tailored reporting process was required to provide sufficient data for analysis of UAP events.

• As a result, the UAPTF concentrated its review on reports that occurred between 2004 and 2021, the majority of which are a result of this new tailored process to better capture UAP events through formalized reporting.

• Most of the UAP reported probably do represent physical objects given that a majority of UAP were registered across multiple sensors, to include radar, infrared, electro-optical, weapon seekers, and visual observation.

In a limited number of incidents, UAP reportedly appeared to exhibit unusual flight characteristics. These observations could be the result of sensor errors, spoofing, or observer misperception and require additional rigorous analysis. There are probably multiple types of UAP requiring different explanations based on the range of appearances and behaviors described in the available reporting. Our analysis of the data supports the construct that if and when individual UAP incidents are resolved they will fall into one of five potential explanatory categories: airborne clutter, natural atmospheric phenomena, USG or U.S. industry developmental programs, foreign adversary systems, and a catchall “other” bin.

UAP clearly pose a safety of flight issue and may pose a challenge to U.S. national security. Safety concerns primarily center on aviators contending with an increasingly cluttered air domain. UAP would also represent a national security challenge if they are foreign adversary collection platforms or provide evidence a potential adversary has developed either a breakthrough or disruptive technology.

After carefully considering this information, the UAPTF focused on reports that involved UAP largely witnessed firsthand by military aviators and that were collected from systems we considered to be reliable. These reports describe incidents that occurred between 2004 and 2021, with the majority coming in the last two years as the new reporting mechanism became better known to the military aviation community. We were able to identify one reported UAP with high confidence. In that case, we identified the object as a large, deflating balloon. The others remain unexplained.
• 144 reports originated from USG sources. Of these, 80 reports involved observation with multiple sensors.
o Most reports described UAP as objects that interrupted pre-planned training or other military activity.

UAP Collection Challenges.
Sociocultural stigmas and sensor limitations remain obstacles to collecting data on UAP. Although some technical challenges—such as how to appropriately filter out radar clutter to ensure safety of flight for military and civilian aircraft—are longstanding in the aviation community, while others are unique to the UAP problem set.

• Narratives from aviators in the operational community and analysts from the military and IC describe disparagement associated with observing UAP, reporting it, or attempting to discuss it with colleagues. Although the effects of these stigmas have lessened as senior members of the scientific, policy, military, and intelligence communities engage on the topic seriously in public, reputational risk may keep many observers silent, complicating scientific pursuit of the topic.
• The sensors mounted on U.S. military platforms are typically designed to fulfill specific missions. As a result, those sensors are not generally suited for identifying UAP.
• Sensor vantage points and the numbers of sensors concurrently observing an object play substantial roles in distinguishing UAP from known objects and determining whether a UAP demonstrates breakthrough aerospace capabilities. Optical sensors have the benefit of providing some insight into relative size, shape, and structure. Radiofrequency sensors provide more accurate velocity and range information.

But Some Potential Patterns Do Emerge.
Although there was wide variability in the reports and the dataset is currently too limited to allow for detailed trend or pattern analysis, there was some clustering of UAP observations regarding shape, size, and, particularly, propulsion. UAP sightings also tended to cluster around U.S. training and testing grounds, but we assess that this may result from a collection bias as a result of focused attention, greater numbers of latest-generation sensors operating in those areas, unit expectations, and guidance to report anomalies. And a Handful of UAP Appear to Demonstrate Advanced Technology In 18 incidents, described in 21 reports, observers reported unusual UAP movement patterns or flight characteristics.

Some UAP appeared to remain stationary in winds aloft, move against the wind, maneuver abruptly, or move at considerable speed, without discernable means of propulsion. In a small number of cases, military aircraft systems processed radio frequency (RF) energy associated with UAP sightings.

The UAPTF holds a small amount of data that appear to show UAP demonstrating acceleration or a degree of signature management. Additional rigorous analysis are necessary by multiple teams or groups of technical experts to determine the nature and validity of these data. We are conducting further analysis to determine if breakthrough technologies were demonstrated.

The UAP documented in this limited dataset demonstrate an array of aerial behaviors, reinforcing the possibility there are multiple types of UAP requiring different explanations. Our analysis of the data supports the construct that if and when individual UAP incidents are resolved they will fall into one of five potential explanatory categories: airborne clutter, natural atmospheric phenomena, USG or industry developmental programs, foreign adversary systems, and a catchall “other” bin. With the exception of the one instance where we determined with high confidence that the reported UAP was airborne clutter, specifically a deflating balloon, we currently lack sufficient information in our dataset to attribute incidents to specific explanations. Airborne Clutter: These objects include birds, balloons, recreational unmanned aerial vehicles (UAV), or airborne debris like plastic bags that muddle a scene and affect an operator’s ability to identify true targets, such as enemy aircraft.

Natural Atmospheric Phenomena: Natural atmospheric phenomena includes ice crystals, moisture, and thermal fluctuations that may register on some infrared and radar systems. USG or Industry Developmental Programs: Some UAP observations could be attributable to developments and classified programs by U.S. entities. We were unable to confirm, however, that these systems accounted for any of the UAP reports we collected.

Foreign Adversary Systems: Some UAP may be technologies deployed by China, Russia, another nation, or a non-governmental entity.

Other: Although most of the UAP described in our dataset probably remain unidentified due to limited data or challenges to collection processing or analysis, we may require additional scientific knowledge to successfully collect on, analyze and characterize some of them. We would group such objects in this category pending scientific advances that allowed us to better understand them. The UAPTF intends to focus additional analysis on the small number of cases where a UAP appeared to display unusual flight characteristics or signature management.

UAP pose a hazard to safety of flight and could pose a broader danger if some instances represent sophisticated collection against U.S. military activities by a foreign government or demonstrate a breakthrough aerospace technology by a potential adversary.

Ongoing Airspace Concerns.
When aviators encounter safety hazards, they are required to report these concerns. Depending on the location, volume, and behavior of hazards during incursions on ranges, pilots may cease their tests and/or training and land their aircraft, which has a deterrent effect on reporting.
• The UAPTF has 11 reports of documented instances in which pilots reported near misses with a UAP.

Potential National Security Challenges.
We currently lack data to indicate any UAP are part of a foreign collection program or indicative of a major technological advancement by a potential adversary. We continue to monitor for evidence of such programs given the counter intelligence challenge they would pose, particularly as some UAP have been detected near military facilities or by aircraft carrying the USG’s most advanced sensor systems.


Standardize the Reporting, Consolidate the Data, and Deepen the Analysis.
In line with the provisions of Senate Report 116-233, accompanying the IAA for FY 2021, the UAPTF’s long-term goal is to widen the scope of its work to include additional UAP events documented by a broader swath of USG personnel and technical systems in its analysis. As the dataset increases, the UAPTF’s ability to employ data analytics to detect trends will also improve. The initial focus will be to employ artificial intelligence/machine learning algorithms to cluster and recognize similarities and patterns in features of the data points. As the database accumulates information from known aerial objects such as weather balloons, high-altitude or super-pressure balloons, and wildlife, machine learning can add efficiency by pre-assessing UAP reports to see if those records match similar events already in the database.

• The UAPTF has begun to develop interagency analytical and processing workflows

The majority of UAP data is from U.S. Navy reporting, but efforts are underway to standardize incident reporting across U.S. military services and other government agencies to ensure all relevant data is captured with respect to particular incidents and any U.S. activities that might be relevant. The UAPTF is currently working to acquire additional reporting, including from the U.S. Air Force (USAF), and has begun receiving data from the Federal Aviation Administration (FAA).

• Although USAF data collection has been limited historically the USAF began a six-month pilot program in November 2020 to collect in the most likely areas to encounter UAP and is evaluating how to normalize future collection, reporting, and analysis across the entire Air Force.

• The FAA captures data related to UAP during the normal course of managing air traffic operations. The FAA generally ingests this data when pilots and other airspace users report unusual or unexpected events to the FAA’s Air Traffic Organization.

• In addition, the FAA continuously monitors its systems for anomalies, generating additional information that may be of use to the UAPTF. The FAA is able to isolate data of interest to the UAPTF and make it available. The FAA has a robust and effective outreach program that can help the UAPTF reach members of the aviation community to highlight the importance of reporting UAP.

Expand Collection.
The UAPTF is looking for novel ways to increase collection of UAP cluster areas when U.S. forces are not present as a way to baseline “standard” UAP activity and mitigate the collection bias in the dataset. One proposal is to use advanced algorithms to search historical data captured and stored by radars. The UAPTF also plans to update its current interagency UAP collection strategy in order bring to bear relevant collection platforms and methods from the DoD and the IC.

Increase Investment in Research and Development.
The UAPTF has indicated that additional funding for research and development could further the future study of the topics laid out in this report. Such investments should be guided by a UAP Collection Strategy, UAP R&D Technical Roadmap, and a UAP Program Plan.

APPENDIX A – Definition of Key Terms
This report and UAPTF databases use the following defining terms:
Unidentified Aerial Phenomena (UAP): Airborne objects not immediately identifiable. The acronym UAP represents the broadest category of airborne objects reviewed for analysis. UAP Event: A holistic description of an occurrence during which a pilot or aircrew witnessed (or detected) a UAP.

UAP Incident: A specific part of the event.
UAP Report: Documentation of a UAP event, to include verified chains of custody and basic information such as the time, date, location, and description of the UAP. UAP reports include Range Fouler 1 reports and other reporting.

1 U.S. Navy aviators define a “range fouler” as an activity or object that interrupts pre-planned training or other military activity in a military operating area or restricted airspace.

APPENDIX B – Senate Report Accompanying the Intelligence Authorization Act for Fiscal Year 2021
Senate Report 116-233, accompanying the Intelligence Authorization Act for Fiscal Year 2021, provides that the DNI, in consultation with the SECDEF and other relevant heads of USG Agencies, is to submit an intelligence assessment of the threat posed by UAP and the progress the UAPTF has made to understand this threat.

The Senate Report specifically requested that the report include:

  1. A detailed analysis of UAP data and intelligence reporting collected or held by the Office of Naval Intelligence, including data and intelligence reporting held by the UAPTF;
  2. A detailed analysis of unidentified phenomena data collected by:
    a. Geospatial Intelligence;
    b. Signals Intelligence;
    c. Human Intelligence; and
    d. Measurement and Signatures Intelligence
  3. A detailed analysis of data of the Federal Bureau of Investigation, which was derived from investigations of intrusions of UAP data over restricted U.S. airspace; A detailed description of an interagency process for ensuring timely data collection and centralized analysis of all UAP reporting for the Federal Government, regardless of which service or agency acquired the information;
  4. Identification of an official accountable for the process described in paragraph 4;
  5. Identification of potential aerospace or other threats posed by the UAP to national security, and an assessment of whether this UAP activity may be attributed to one or more foreign adversaries;
  6. Identification of any incidents or patterns that indicate a potential adversary, have achieved breakthrough aerospace capabilities that could put U.S. strategic or conventional forces at risk; and
  7. Recommendations regarding increased collection of data, enhanced research and development, additional funding, and other resources.

The most sophisticated military in the world has no idea what UFOs are

‘The Pentagon seems fairly certain that these aren’t Russian and not Chinese–So what are they?’

#space #Extraterrestrial #UFO #UAP #Unexplained

‘Tucker Carlson Tonight’ says Pentagon has covered up UFO information

Listen to this article

Human beings have been wondering about unexplained lights in the night sky since the first neanderthal cooked an ocelot over a campfire and looked up. But in our age—the modern age—fascination with ufos began in the summer of 1947 when a man called Mac Brazel found something very weird on his ranch in Corona, New Mexico, about 85 miles northwest of Roswell. 

Suspecting it might be debris from outer space, Brazel dutifully brought the pieces to a nearby military base. The next day, the base issued a press release confirming that the material was in fact from a “flying disc,” a flying saucer. News agencies around the world announced the shocking find—flying saucers!

Then, within hours, the U.S. military changed its assessment. Brigadier General Roger Ramey,  commander of the Eighth Air Force, announced that in fact, the debris from outside Roswell was nothing more than a weather balloon. Not a big deal. Nothing extraordinary. Certainly nothing extraterrestrial. Was General Ramey telling the truth about that? He may well have been. It may have been a weather balloon. But that wasn’t the end of the story.

Over the past 75 years, the US military has gathered evidence on a remarkable number of puzzling aerial phenomena, most of which were definitely not weather balloons. Unexplained flying objects have buzzed US Military bases, missile sites, ships, aircraft, and submarines, often at speeds and in directions that seem to defy any known human technology. Video

The Pentagon has said next to nothing about any of this in public and instead has consistently covered it up. Virtually everything we know about UFOs comes from whistleblowers. By the time this show launched nearly five years ago, it was clear there was definitely something very odd going on in the skies above us. 

UFOs were not some crackpot theory, cooked up on late-night radio. They were absolutely real. 

The question was, what are they exactly? Over the years, several powerful political figures in Washington, including Senator Harry Reid of Nevada, have pushed the U.S. military to reveal what it knows about UFOs. But in every case, they’ve failed to dislodge that information.

Then, last year, Senator Marco Rubio of Florida inserted a demand for transparency into a federal appropriations bill. By the end of June 2021, the government was required to turn over its full assessment of UFOs. Just a few hours ago, that report finally came out—late on a Friday.Video

We’ve only seen the public version so far, but here’s what we can tell you: Government investigators seem sincerely baffled by what these things are. Today’s report analyzed 144 separate sightings of UFOs by the US military. But in only one case could the government explain what it was. It was a quote “large, deflating balloon.” The rest of the 143 remain a complete and total mystery. The most sophisticated military in the world has no idea what these things are or even how they move from place to place. 

Some of these aircraft, the report says, “appeared to remain stationary in winds aloft, move against the wind, maneuver abruptly, or move at considerable speed, without discernable means of propulsion.” 

So we do know that no government in the world possesses anything like this. No technology exists that we know of. The Pentagon seems fairly certain that these aren’t Russian and not Chinese. So what are they? 

The report doesn’t say, it notes only the obvious. UFOs, “clearly pose a safety of flight issue and may pose a challenge to U.S. National security.”

This article is adapted from Tucker Carlson’s opening commentary on the June 25, 2021, edition of “Tucker Carlson Tonight.”

The Science of Aliens, Have They Overcome Their Savage Past, or Might They Want to Eat Us?

Reviewing our own species’ behavior suggests a cautious approach to contact with extraterrestrials.

#Aliens #UFO #UAP #Space

Lions do it. Humans do it. What about extraterrestrials? (Pixabay)
Listen to this article

Social structure is enormously important in trying to predict how alien societies might behave, as discussed in Part 1 of this series. It determines whether a society’s actions will be dominated by cooperation or selfishness. And the range of possible behaviors is enormous, from altruism—individuals helping others at a cost to themselves, even if it means increasing the other’s chances of survival and reproduction—to cannibalism, where an individual increases its own chances of survival by consuming another individual of its own species as food.

The latter extreme, cannibalism, has recently been studied by a group led by Mike Boots from the University of California-Berkeley. The researchers used Indian moth larvae in their experiments and found that less selfish behavior evolved under living conditions that forced individuals to interact more frequently with siblings. It’s true that Nature allows for cannibalism under extreme circumstances, where some individuals are sacrificed so that the species can survive. But as the research by Boots shows, individuals are more reluctant to employ this extreme practice if they have more interactions with each other, such as sibling interactions.

Reluctant or not, we shouldn’t be too hard in judging the moth larvae, because cannibalism has now been documented in more than 1,000 different species, including humans. There have been cannibalistic human tribes in the past, and even today there are cases of cannibalistic behavior in individuals. Neanderthals, our closest hominid species, are believed to have practiced cannibalism. More disturbingly, in certain societies cannibalism has been used for ritual purposes. An especially shocking example is the Aztecs, who are believed to have used razor-sharp obsidian blades to slice open the chests of their victims and rip out their hearts, as a prelude to ritual cannibalism.

Of course, cannibalism isn’t humankind’s only bad behavior—there are plenty of other examples. In an unforgettable two-part episode of Star Trek: The Next Generation (“All Good Things”) humanity is put on trial by the Q continuum. The critical question: whether our species has evolved beyond its savage past.

Of course, other species on our planet have no qualms about such matters. Think about lions, where a new male taking over the pride kills the cubs of his predecessor. We might debate whether it’s ethical to kill individuals of one’s own species for food in extreme circumstances, but Nature doesn’t seem to have a problem with it if it’s advantageous for the survival of the species. (Nature does not seem to care about the individual at all, sorry).

I think the same biological laws would apply to aliens as well. A spacefaring extraterrestrial civilization would be expected to reside at the top of their food chain. The more technologically advanced they are, and the more power they have over their fellow species, the more damage they can do (compare a Stone Age axe with today’s nuclear bomb). That should make us cautious if and when we make contact with an advanced alien species. We won’t know ahead of time whether they have overcome a savage past. Humans certainly have not.

Can ET see us? Study finds many stars with prime Earth view

“Hiding is not really an option,” says Lisa Kaltenegger

#space #Extraterrestrial #UFO #UAP

Feeling like you are being watched? It could be from a lot farther away than you think.

Astronomers took a technique used to look for life on other planets and flipped it around — so instead of looking to see what’s out there, they tried to see what places could see us.

There’s a lot.

This illustration provided by the American Museum of Natural History depicts the planet Earth, center, with the Sun in the background. The line of spots across the center of the image indicates star systems which can see Earth as it goes in front of our Sun. (OpenSpace/American Museum of Natural History via AP)

This illustration provided by the American Museum of Natural History depicts the planet Earth, center, with the Sun in the background. The line of spots across the center of the image indicates star systems which can see Earth as it goes in front of our Sun. (OpenSpace/American Museum of Natural History via AP)

Astronomers calculated that 1,715 stars in our galactic neighborhood — and hundreds of probable Earth-like planets circling those stars — have had an unobstructed view of Earth during human civilization, according to a study Wednesday in the journal Nature.

“When I look up at the sky, it looks a little bit friendlier because it’s like, maybe somebody is waving,” said study lead author Lisa Kaltenegger, director of the Carl Sagan Institute at Cornell University.

Even though some experts, including the late Stephen Hawking, warn against reaching out to aliens because they could harm us, Kaltenegger said it doesn’t matter. If those planets have advanced life, someone out there could conclude that there is life back here based on oxygen in our atmosphere, or by the radio waves from human sources that have swept over 75 of the closest stars on her list.

“Hiding is not really an option,” she said.

One way humans look for potentially habitable planets is by watching them as they cross in front of the star they are orbiting, which dims the stars’ light slightly. Kaltenegger and astrophysicist Jacqueline Faherty of the American Museum of Natural History used the European Space Agency’s Gaia space telescope to turn that around, looking to see what star systems could watch Earth as it passes in front of the sun.

They looked at the 331,312 stars within 326 light-years of Earth. One light-year is 5.9 trillion miles. The angle to see Earth pass in front of the sun is so small that only the 1,715 could see Earth at some point in the last 5,000 years, including 313 that no longer can see us because we’ve moved out of view.

Another 319 stars will be able to see Earth in the next 5,000 years, including a few star systems where scientists have already spotted Earth-like planets, prime candidates for contact. That brings the total to more than 2,000 star systems with an Earth view.

The closest star on Kaltenegger’s list is the red dwarf star Wolf 359, which is 7.9 light-years away. It’s been able to see us since the disco era of the mid 1970s.

Carnegie Institution for Science planetary scientist Alan Boss, who wasn’t part of the study, called it “provocative.” He said in addition to viewing Earth moving in front of the star, space telescopes nearby could spot us even if the cosmic geometry is wrong: “So intelligent civilizations who build space telescopes could be studying us right now.”

So why haven’t we heard from them?

It takes a long time for messages and life to travel between stars and civilizations might not last long. So between those two it’s enough to limit the chances for civilizations to exchange “emails and TikTok videos,” Boss said in his own email. “So we should not expect aliens to show up anytime soon.”

Or, Kaltenneger said, life in the cosmos, could just be rare.

What’s exciting about the study is that it tells scientists “where to point our instruments,” said outside astronomer Seth Shostak of the SETI Institute that searches for extraterrestrial intelligence. “You might know where to look for the aliens!”


#Comet #Space #Astronomy # 2014UN271

Artwork depicting a Kuiper Belt Object far beyond Neptune. Credit: ASA/ESA/G. Bacon (STScI)

Artwork depicting a Kuiper Belt Object far beyond Neptune. Credit: ASA/ESA/G. Bacon (STScI)

Listen to this Article

While scanning older data from a telescopic survey of the sky, astronomers discovered a very interesting object: Called 2014 UN271, it’s a giant chunk of ice and rock that normally spends its time far, far out past Neptune, but is now heading into the solar system, and will get about as close to the Sun as Saturn over the next ten years!

To be clear, a lot of new comets we find dip pretty close to the Sun after spending millennia out there in the black, but this one is different for quite a few reasons.

One is how ridiculously elongated its orbit is: It goes from about 1.6 billion kilometers from the Sun (just outside Saturn’s orbit*) to a mind-numbing 2 trillion kilometers out. That’s a fifth of a light year! From that distance the Sun’s gravity is so weak a whisper could push this thing into interstellar space.

Another is its size. A big comet might be 50 kilometers wide (the size of the famous Hale-Bopp comet which visited the inner solar system in the 1990s). This one may be — and I’m still reeling from this — a staggering 200 kilometers wide.

Holy wow!The orbit and current position (in 2021) of the newly discovered megacomet 2014 UN271. The orbit is tipped over 90° to the plane of the planets, and it gets about as close to the Sun as Saturn. Credit: NASA/JPL-CaltechZoom In

The orbit and current position (in 2021) of the newly discovered megacomet 2014 UN271. The orbit is tipped over 90° to the plane of the planets, and it gets about as close to the Sun as Saturn. Credit: NASA/JPL-Caltech

2014 UN271 was found in data from the Dark Energy Survey, an enormous project to map about 1/8th of the entire sky over several years. The main mission of the survey is to map out hundreds of millions of galaxies and thousands of supernovae to understand better the shape, size, and expansion of the Universe.

However, it can also see some things significantly closer to home, like solar system bodies. These move very slowly from one night to the next, and software can be written to look at images taken at different times to search for moving objects. The first known image of 2014 UN271 was in 2014, so it was back-named to that date.

The discovery was announced on June 19, 2021, and even since then the orbit has been updated a few times. I’m using the latest numbers from the JPL Minor Planet Database here. But generally speaking, the orbit is very long and the object very big.

Pedro Bernardinelli, one of the astronomers on the team, posted this image of it, a combination of several images taken over years.

[His comment in the tweet is that no outgassing is seen from it yet; more on this below.]

2014 UN271 is what we call a Trans-Neptunian Object, or TNO. This is a class of objects that orbit the Sun out past Neptune, and come in a variety of shapes, sizes, orbits, and so on. Some are quite big. Pluto is technically the largest we know of, at about 2,400 km wide (the distance from Denver to Washington, D.C.). Many found are in the 100 – 1,000 km range, but these objects are so far away we’ve only found a handful of the trillions of them that are out there.A wider view of the orbit of 2014 UN271, showing it compared to the orbit of Neptune. Its orbit stretches roughly two trillion kilometers out from the Sun, but gets as close as about 1.6 billion. Credit: NASA/JPL-CaltechZoom In

A wider view of the orbit of 2014 UN271, showing it compared to the orbit of Neptune. Its orbit stretches roughly two trillion kilometers out from the Sun, but gets as close as about 1.6 billion. The position marked is where it will be in the year 2200. Credit: NASA/JPL-Caltech

2014 UN271 spends most of its 600,000-year or so orbit hundreds of billions of kilometers from the Sun, and the only reason it was found at all is because it’s only about 3 billion km away from us right now, roughly the distance of Neptune from the Sun. That’s how its size was found as well. For a given brightness we see at Earth, a shiny object is smaller and a dark one bigger. If we assume it reflects 4% of the sunlight hitting it (reasonable, since that’s a decent average for TNOs) it’s 200 kilometers wide. But it might be darker and bigger, or more reflective and smaller. We’ll know better in the next few years.

We don’t know what this object is made of exactly, but given what we know about TNOs, it’s likely a mix of water ice and rock, plus other frozen things like carbon dioxide, methane, nitrogen, and the like. It’s too small to be round; its gravity’s too weak to crush itself into a sphere (the smallest known object like that in the solar system is Saturn’s moon Mimas, at 400 km wide), so it’s very likely irregular in shape.Every round object in the solar system under 10,000 km in diameter, shown to scale. Zoom In

Every round object in the solar system under 10,000 km in diameter, shown to scale. Credit: Emily Lakdawalla; data from NASA / JPL, JHUAPL/SwRI, SSI, and UCLA / MPS / DLR / IDA, processed by Gordan Ugarkovic, Ted Stryk, Bjorn Jonsson, Roman Tkachenko, and Emily Lakdawalla.

So it’s more like a really Brobdingnagian comet than a teeny planet. Which makes me wonder: Will it act like a comet? I mean, will we see activity from it as it nears the Sun, with ices turning into gases so that it develops a fuzzy head and long tail? It might, since we’ve seen activity from other objects that get as close as this one will.

Given its size, if it does start to get busy, it might get much brighter. Without activity it should get to about magnitude 18 at closest approach, which is still 1/100,000th as bright as the faintest star you can see by eye. It’ll take big telescopes to see it. But if it gets active, well, we’ll see.

And I wonder: It makes its closest approach in early 2031. That’s soon, but perhaps enough time to get a probe together to send to it. The European Space Agency is building a mission called Comet Interceptor that is specifically designed to look for comets coming from deep space that are on their first inbound trip to the inner solar system (like Comet Borisov from 2019). This one has dipped down many times over the past few billion years, but I wonder if ESA will make an exception for it? We’ve never had a chance to see anything like this up close before. Some moons of the outer planets look like captured TNOs, but they’ve certainly been altered over the eons by their host planet and proximity to the Sun. Seeing a new TNO this size up close and for an extended visit would be extraordinary.

I expect we’ll get lots of images of it soon (at the moment, unfortunately, Hubble is off-line, so hopefully the bigger ground-based ‘scopes can get a look). They’ll just be dots, even when it gets closer over the next decade, but there’s a lot we can learn from a dot. Stay tuned!

Martian Life May Be Hiding in Islands of Habitability

#Mars #ET #life #Extraterrestrial

Zeroing in on the best environmental niches to explore during the next mission to Mars.

Listen to this article
No, it’s not Mars. It’s a field of salt nodules in the Atacama Desert. (Dirk Schulze-Makuch)

The Atacama Desert is one of the driest places on Earth, and is often used as an analog for Mars due to climatic and geochemical similarities between the two. In a new publication, an international group of researchers, led by me, report on our analysis of “islands of habitability” within the Atacama. We focused on rock types thought to host microorganisms best adapted to withstand a Mars-like environment—that is, characterized by extreme dryness, high ultraviolet irradiation, and scarcity of potential nutrients. That led us to zero in on three types: quartz rocks, gypsum crusts, and salt nodules surrounded by loose desert sediments.

Our approach employed a state-of-the-art methodology, including metagenomics and molecular separation techniques that are able to distinguish between DNA and ATP inside cells from those that exist outside. If we find them inside, it’s interpreted as coming from active, living cells.

Applying this technique, we found that cyanobacteria on the underside of quartz rocks were continuously active and even reproducing, while the microbial communities populating gypsum crusts and salt rocks have a lifestyle that switches between dormant and active phases.

salt rock.jpg
A salt rock from the driest core of the Atacama Desert, with a layer of scytonemin (the black band with a thickness of 1-2 millimeters), which is a pigment indicative of microbial life. (Dirk Schulze-Makuch)

Microbes living in the driest part of the Atacama, where it rains maybe once a decade, have amazing adaptation techniques. Called endoliths, they live within rocks, where they are protected from UV radiation, extreme temperature fluctuations, and the desiccating desert winds. Endoliths use salt from the rocks to draw life-sustaining water directly from the atmosphere (by the same principle that causes the salt in your shaker to clump up when exposed to air). That means these primitive life forms can survive where there is no precipitation.

Our team is not the only one searching for islands of life in an otherwise barren desert. Last year another group of researchers led by Armando Azua-Bustos from the Centro de Astrobiología in Madrid, Spain discovered a one-foot-deep layer of wet clay that hosts at least 30 different active microbial species. If such a habitat exists on Mars, ESA’s Rosaland Franklin rover, due to arrive there in June 2023, may be able to reach it with its drill.

Add to this the recent finding of volcanic activity on Mars that may have occurred within the last 50,000 years—a blink of an eye in geological terms—and we might have another potential habitat on Mars. To me it appears more and more likely that active hydrothermal areas are still existing on Mars. That would mean there are several potential hotspots for microbial life. We should identify and prioritize these, and send our next mission to explore at least one of them. That would certainly increase our chances of finding life.

Infamous ‘Tic Tac’ UFO spotted by US Navy pilot now seen over England

#Space #UFO #UAP #Unexplained

The mysterious UFO had reportedly been hovering for some time before it instantly disappeared

Listen to this article

The UFO resembling a “white Tic Tac” spotted in 2004 by Former U.S. Navy pilot Cmdr. David Fravor while on duty at the USS Nimitz is back – but this time it’s floating over England.

Pictures of the notorious UFO were snapped by Lucy Jane Castle, from Hinckley in south-west Leicestershire, who managed to grab a snap of the unexplained object and posted it on a UFO hunter’s Facebook page, which was found by the Daily Star.

“It was hovering for a while and within a blink of an eye it had gone,” Castle said.

UFO seen in clip released by Department of Defense. A Pentagon watchdog is launching a probe into the actions taken by the Department of Defense after a series of UFO sightings in recent years.   

UFO seen in clip released by Department of Defense. A Pentagon watchdog is launching a probe into the actions taken by the Department of Defense after a series of UFO sightings in recent years.    (Department of Defense)

“Never seen anything like this before in that shape… Quickly took a picture while it was very still and within a blink of an eye it disappeared.”

Dan Watson, a fellow of the private UK UFO Sightings group, then posted a pic of two similar objects he claims to have seen over Swindon last year and a man called Terry Moore noted: “Sightings have Increased massively..from what I’ve heard US military had 6000 sightings last year either we’re being visited or someone has some new tech.”

In a 2017 interview, Fravor, who was on a routine training mission about 60 to 100 miles off the coast between San Diego and Ensenada, Mexico, described his initial sighting as a “white Tic Tac, about the same size as a Hornet, 40 feet long with no wings… Just hanging close to the water.”

The object didn’t create rotor wash — air turbulence caused by helicopter blades — and mirrored the pilots’ movements as they got closer, then disappeared altogether.

The retired Navy man spoke out after the Pentagon confirmed that a top-secret initiative called the Advanced Aerospace Threat Identification Program studied UFOs between 2007 and 2012 with a budget of $22 million.

Electric Airship Designed to Replace Short Haul Plane Trips

#Airlander #HAV #blimp #aviation

Listen to this story

“Flying bum” airship concept updated with motors powered by fuel cells alongside diesel engines

UK aviation company Hybrid Air Vehicles has updated its “flying bum” Airlander 10 concept with a lower-carbon version featuring electric motors powered by hydrogen fuel cells.

The latest version of the airship will produce “75 per cent fewer emissions than conventional aircraft in similar roles,” the company claimed.

The aircraft, which will be able to carry 100 passengers on short-haul routes when it goes into production, will still feature two diesel engines.

Airlander 10 on its test flight
Airlander 10 went viral in 2016 when it was nicknamed the “flying bum”

But Hybrid Air Vehicles (HAV) said a fully electric version could be available by 2030.

The Airlander 10 went viral in 2016 when photographs released of its test flight earned it the nickname of the “flying bum”.  Subsequent redesigns have made it svelter and less peach-shaped.

Hybrid airships combine features of both traditional lighter-than-air airships and aeroplanes, which are heavier than air and achieve lift via aerodynamic wings and powerful engines.

As a result, they are slower than aeroplanes but consume significantly less energy.

Interior render of the Airlander 10
The vessel will be able to carry 100 passengers

The hybrid Airlander 10 features a passenger cabin suspended beneath an aerodynamic, helium-filled balloon. This provides 60 per cent of its lift, with the remainder coming from the passage of air over the hull.

It is powered by four vectored engines, which can swivel to provide lift when taking off and forward thrush when in flight.

“Using lighter-than-air technology means that Airlander 10 requires significantly less power to generate lift and fly,” a spokesperson for HAV told Dezeen.

“Airlander 10, therefore, produces far fewer emissions even before electrification.”

Hydrogen fuel cells convert the gas into electrical energy via a chemical reaction rather than by burning it. They are being touted as a potential way of decarbonising air travel since the only emission is water.

HAV calculates that a passenger’s individual carbon impact for a flight between Barcelona and Palma de Mallorca would be 4.5 kilograms on an Airlander 10, versus 53 kilograms taking the same trip on a traditional aeroplane.

Although airships are slower than traditional fixed-wing aeroplanes, HAV pointed out that they can deliver passengers closer to their final destination as they can take off and land on any flat surface, including water.

“Over shorter routes, this is balanced by Airlander 10’s ability to operate much closer to the final destination and fly point-to-point,” said HAV.

HAV has proposed airships as a less carbon intensive mode of flight
The airship is proposed for inter-city flights

“In some cases, this makes the total journal time very similar or only slightly longer but with all the benefits of comfortable travel with very low emissions.”

Helium is the second-most abundant element in the universe after hydrogen, but it is a finite resource because it is light enough to escape the earth’s gravitational pull and float away into space.

The only non-renewable element on Earth, helium is a byproduct of the decay of radioactive elements including uranium and thorium.

Recently there have been fears that supplies of the gas are running out. However, HAV claims that Airlander 10 would not significantly deplete the planet’s resources.

“Although helium is a finite resource, there are ample reserves and new helium fields are being identified now,” said the company.

“Even with 600 aircraft in use in the world, Airlander 10s would make up just 1 per cent of the world’s annual helium consumption.”

Hybrid airships combine techniques from airships and aeroplanes to fly

HAV is partnering with British aviation business 2Excel Aviation to offer Airlander 10 to airlines and cruise companies.

“It is HAV’s plan to produce at least 12 aircraft per year,” said the company.

More low-emissions aircraft designs includes these three concepts for zero-emission commercial aircraft by Airbus and a V-shaped aircraft by Dutch airline KLM and TU Delft.

Will We Recognize Extraterrestrial Life When We See It?

#space #UAP #Extraterrestrial #Unexplained

A leading expert on planetary astronomy reflects on what the next generation of space telescopes might reveal.

 image of 7 planets
For now, we can only imagine what the seven exoplanets in the TRAPPIST-1 system, 39 light years away, look like. Found in 2015 and 2017, they orbit a red dwarf star and are about the same size as Earth. (NASA)
Listen to this story

When I look up at the stars, I love to wonder what kind of planets might be around each one. Every star is a sun, and astronomers have found thousands of planets orbiting other stars, called exoplanets. Perhaps there are intelligent beings on a distant planet, looking back at our sun—a star to them—wondering the same thing.

We astronomers are unabashedly anticipating a paradigm shift in exoplanet characterization—made possible by a sophisticated new telescope over 30 years in the making: the James Webb Space Telescope, set for launch this October. Webb will undergo a series of daunting deployments, including the unfurling of a tennis court-sized, five-layer sunshield before reaching its destination a million miles away from Earth. Thousands of astronomers all around the world have pinned their research hopes and dreams on Webb, not just for exoplanets but for many frontier topics in astronomy. But for those of us studying exoplanets, Webb will open a new window.

multicolored clouds swirling on Venus
An ultraviolet camera on the Japanese Venus climate orbiter Akatsuki returned images later processed with false color and showing details of the planet’s clouds. (© JAXA)

Webb will bring us our first chance to routinely observe small rocky exoplanet atmospheres. Atmospheric water vapor would indicate the presence of surface liquid water oceans—key because a liquid solvent is needed for life. Imagine: Soon we may know that rocky planets with liquid water exist and are common—implying that habitable worlds might be all around us. Even more compelling is the chance to identify atmospheric gases that might be attributed to life, called biosignature gases. For example, molecular oxygen fills Earth’s atmosphere to 20 percent by volume but is so highly reactive it should not be present at all, without continual replenishment—in this case, by plants and photosynthetic bacteria. If molecular oxygen appeared in the atmosphere of a small rocky exoplanet, we would likewise assume that some process is at work there to continually replenish it. Admittedly, getting a strong robust signal from small exoplanet atmospheres might be tough for Webb, possibly right at the edge of its capabilities. True Earth twins—those Earth-size planets in Earth-like orbits about stars like our sun—are completely out of this telescope’s reach.

Instead, Webb’s ultimate lottery ticket is one of the handful of small planets transiting small red dwarf stars. Such planets orbiting in the “Goldilocks zone” will be different from Earth: locked into a rotation rate that causes a permanent day and permanent night side and bombarded by intense high-energy radiation from frequent stellar flares.

Transiting Exoplanet Survey Satellite
The Transiting Exoplanet Survey Satellite has found 2,600 planet candidates. Coming soon: a telescope that can study their atmospheres. (NASA)

We may have already found a biosignature gas right next door, on our sister planet Venus. Venus, with its scorching surface so hot no life of any kind could survive, seems an unlikely abode. But a cloud-filled layer well above the surface does have a suitable temperature for life. The cloud environment is very harsh—highly acidic and incredibly dry—nonetheless, people have speculated about life in the Venus clouds for more than half a century.

I was part of a team led by Professor Jane Greaves that recently reported the detection of phosphine gas from radio telescope observations of Venus. We calculated that no known chemical process—from volcanoes to lightning to meteorite delivery and more—could produce phosphine in anywhere near the part-per-billion quantities inferred from our data. In addition, there simply is not enough hydrogen nor the right temperatures and pressures for phosphine (PH3) to form on its own. We are left with the possibility of unknown chemistry, or more speculatively, the possibility of life. On Earth, phosphine gas is associated only with life, produced by bacteria in oxygen-free environments such as wetlands and by humans for industry.

What followed our announcement was healthy, but unexpectedly harsh, skepticism from the scientific community. Some reanalyzed our data and did not find the signal. Others re-found the signal but attributed it to sulfur dioxide and not phosphine. Another team found independent evidence for phosphine in archived data taken directly in the Venus atmosphere by the 1978 NASA Pioneer Venus probe. Many scientists insisted the presence of phosphine can be explained by known chemistry, though no claims have yet been substantiated with scientific publications. The debate about phosphine gas on Venus will continue.

My exoplanet “finish line” has suddenly moved from a few years away to infinitely distanced. For even if we find a potential biosignature gas in an exoplanet atmosphere with Webb (or another of the planned or proposed next-generation telescopes), will the community agree that a tiny signal is more than noise in the data? If a robust signal is found, is there any way to associate the gas with life and not from chemistry in an unknown planetary environment? After all, we will have vastly less information for distant exoplanets as compared to up-close Venus, a planet with decades of observations and visits by over two dozen spacecraft.

replica of the James Webb Space Telescope
When the Super Bowl went to Houston in 2017, a full-scale replica of the James Webb Space Telescope was there in the city to greet the fans. Long-awaited by the public and scientists alike, the JWST will begin a new era of astronomical discovery. (Alberto Conti)

Thankfully scientists have no shortage of imagination. Starshot is a project to launch thousands of tiny spacechips with four-meter-wide solar sails, accelerated to 20 percent the speed of light by a bank of coherent ground-based lasers with a combined power of gigawatts. After a 20-year journey to our nearest star system, Alpha Centauri, some of the surviving and still rapidly traveling starchips will take and send images of any planets back to Earth. An equally ambitious concept envisions a spacecraft 50 billion miles away from Earth, perfectly lined up with the sun and a distant exoplanet. The telescope can then use the sun as a powerful gravitational lens to magnify the exoplanet so highly that the planet surface could be imaged at a resolution of 10 kilometers.

The discovery and characterization of exoplanets has come a long way in the millennia since humans have pondered the mysteries of the multitude of stars. We are lucky to be the first generation who will not just hope, but can truly explore the nearest stars for worlds that are habitable, and just maybe, inhabited.

MIT Professor Sara Seager’s research has introduced many foundational ideas to the field of exoplanets and is now focusesd on the search for the first Earth-like exoplanets and signs of life on them.